Effects of Marina Proximity on Certain Aspects of the Biology of Oysters and Other Benthic Macrofauna in a South Carolina Estuary

P.H. Wendt, R.F. Van Dolah, M.Y. Bobo and J.J. Manzi

South Carolina Marine Resources Center
Technical Report Number 74
December, 1990
EFFECTS OF MARINA PROXIMITY ON CERTAIN ASPECTS OF THE BIOLOGY OF OYSTERS AND OTHER BENTHIC MACROFAUNA IN A SOUTH CAROLINA ESTUARY

by

Priscilla H. Wendt
Robert F. Van Dolah
M. Yvonne Bobo
John J. Manzi

Marine Resources Center
South Carolina Wildlife and Marine Resources Department
PO Box 12559
Charleston, SC 29412

Technical Report No. 74
South Carolina Marine Resources Center

December 1990
List of Figures

Figure

1. Location of marina and control sites .. 2
2. Mean number of oyster spat on a) formica plates and b) PVC "french collectors" deployed for two-week periods at the marina and control sites .. 8
3. Mean number of whole oysters and oyster scars observed on formica plates deployed for three-month periods at the marina and control sites .. 10
4. Percentage of total number of oysters in each reproductive phase collected at the control and marina sites during each sampling period .. 14
5. Percentage of total male and female oysters in each reproductive phase collected at the marina and control sites during each sampling period .. 15
6. Condition index of oysters collected at the marina and control sites during each sampling period .. 19
7. Classification of sediments from the marina and control sites based on percentages of sand, mud, and shell .. 25
8. Mean number of macrofaunal organisms per grab sample (0.05m²) at the marina and control sites during each season .. 26
9. Mean number of macrofaunal species per grab sample (0.05m²) at the marina and control sites during each season .. 27
10. Percentage of total macrofaunal abundance contributed by each of the major taxa at the marina .. 28
11. Percentage of total macrofaunal abundance contributed by each of the major taxa at the control site .. 29
12. Dendrogram depicting the results of a normal cluster analysis of all marina and all control site collections .. 30
13. Nodal constancy and fidelity diagrams illustrating species group/site group coincidences .. 33
14. Percentage of total macrofaunal abundance contributed by each of the dominant species at either the marina or the control site .. 34
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>v</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>STUDY SITES</td>
<td>1</td>
</tr>
<tr>
<td>CONTAMINANTS ANALYSES</td>
<td>1</td>
</tr>
<tr>
<td>METHODS</td>
<td>1</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>3</td>
</tr>
<tr>
<td>Polynuclear Aromatic Hydrocarbon Analyses</td>
<td>3</td>
</tr>
<tr>
<td>Heavy Metal Analyses</td>
<td>3</td>
</tr>
<tr>
<td>OYSTER SPAT RECRUITMENT AND SURVIVAL STUDIES</td>
<td>3</td>
</tr>
<tr>
<td>METHODS</td>
<td>3</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>7</td>
</tr>
<tr>
<td>OYSTER GAMETOGENESIS</td>
<td>11</td>
</tr>
<tr>
<td>METHODS</td>
<td>11</td>
</tr>
<tr>
<td>Field Sampling and Laboratory Analyses</td>
<td>11</td>
</tr>
<tr>
<td>Gonadal Index</td>
<td>11</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>12</td>
</tr>
<tr>
<td>Marina Site Gametogenesis</td>
<td>12</td>
</tr>
<tr>
<td>Control Site Gametogenesis</td>
<td>12</td>
</tr>
<tr>
<td>CONDITION INDEX OF OYSTERS</td>
<td>16</td>
</tr>
<tr>
<td>METHODS</td>
<td>16</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>16</td>
</tr>
<tr>
<td>BENTHIC MACROFAUNAL AND SEDIMENT COMPOSITION STUDIES</td>
<td>20</td>
</tr>
<tr>
<td>METHODS</td>
<td>20</td>
</tr>
<tr>
<td>Benthic Macrofauna</td>
<td>20</td>
</tr>
<tr>
<td>Sediments</td>
<td>22</td>
</tr>
</tbody>
</table>
List of Figures

Figure

1. Location of marina and control sites .. 2

2. Mean number of oyster spat on a) formica plates and b) PVC “french collectors” deployed for two-week periods at the marina and control sites .. 8

3. Mean number of whole oysters and oyster scars observed on formica plates deployed for three-month periods at the marina and control sites ... 10

4. Percentage of total number of oysters in each reproductive phase collected at the control and marina sites during each sampling period .. 14

5. Percentage of total male and female oysters in each reproductive phase collected at the marina and control sites during each sampling period .. 15

6. Condition index of oysters collected at the marina and control sites during each sampling period ... 19

7. Classification of sediments from the marina and control sites based on percentages of sand, mud, and shell ... 25

8. Mean number of macrofaunal organisms per grab sample (0.05m²) at the marina and control sites during each season .. 26

9. Mean number of macrofaunal species per grab sample (0.05m²) at the marina and control sites during each season .. 27

10. Percentage of total macrofaunal abundance contributed by each of the major taxa at the marina ... 28

11. Percentage of total macrofaunal abundance contributed by each of the major taxa at the control site ... 29

12. Dendrogram depicting the results of a normal cluster analysis of all marina and all control site collections .. 30

13. Nodal constancy and fidelity diagrams illustrating species group/site group coincidences .. 33

14. Percentage of total macrofaunal abundance contributed by each of the dominant species at either the marina or the control site .. 34
List of Appendices

Appendix

1. Concentrations of polynuclear aromatic hydrocarbons and heavy metals in water, sediment and oysters collected from Skull Creek Marina and Mackay Creek control sites ... 45

2. Hydrographic data collected in conjunction with the oyster spat recruitment studies 46

3. Species groups generated by an inverse cluster analysis of macrofauna collected in grab samples from marina and control sites ... 48
Introduction

The tremendous influx of people to coastal areas of the United States has been accompanied by proliferation of commercial marinas designed to serve the growing number of recreational boaters. In South Carolina, boat ownership is among the highest of any state on the east coast. In 1984, South Carolina was second only to Maine in the number of boats per person and ranked fourth, behind Florida, Georgia and New York, in the total number of registered boats (Vismor, McGill and Bell, Inc., 1984).

In response to both the increasing demand for boating facilities and a growing concern for the protection of our estuarine environment, numerous documents have been prepared by various governmental agencies, marine advisory services and independent consulting firms, describing the potential environmental impacts of marinas and providing guidelines for their construction, maintenance and use (U.S. Department of Commerce, 1976; Chmura and Ross, 1978; South Carolina Coastal Council, 1984; Vismor, McGill and Bell Inc., 1984; U.S. Environmental Protection Agency, 1985).

Generally speaking, the construction of a marina may affect the ecology of an estuary by changing local shoreline configuration, bottom type and hydrographic regime. The operation of a marina may result in the introduction of various pollutants into the estuary, including fecal wastes, heavy metals and petroleum hydrocarbons (Chmura and Ross, 1978; Marcus and Stokes, 1985; Voudrias and Smith, 1986; Marcus et al., 1988). Although the potential effects of marinas are generally well known, few studies have documented their actual effects in the field (Reish 1961, 1963; Nixon et al., 1973; Soule and Oguri, 1977; Holmes et al., 1985). Because of this paucity of information, regulatory and advisory bodies charged with reviewing marina permit applications frequently have insufficient data regarding the ecological effects of marinas on which to base their decisions.

In order to address this problem, a study was undertaken by the South Carolina Marine Resources Research Institute to evaluate various methods for analyzing marina effects. Specific objectives of this study were to compare a marina and three control sites with respect to four criteria: 1) levels of selected aromatic hydrocarbons and heavy metals in samples of water, sediments, and the American oyster (Crassostrea virginica); 2) recruitment and survival of oyster spat; 3) physiological condition and gametogenesis of oysters; and 4) community structure, faunal abundance and species diversity of benthic macrofauna.

Study Sites

The Skull Creek Marina, on the island of Hilton Head, South Carolina, was chosen as an example of a moderate-size marina having no other obvious sources of pollution nearby (Figure 1). At the time of this study (1986 and 1987), the marina had been in operation for 8 years and had 100 boat slips. Because the marina is located in a well-flushed tidal creek, dredging is not required to maintain the appropriate bottom depths. Like most marinas, the Skull Creek marina provides its customers (who typically live aboard their boats for periods of two to four days at a time) with fuel and sewage pump-out facilities for marine sanitation devices.

Three closely spaced control sites, located in an undeveloped area about three kilometers northwest of the marina on Mackay Creek, were chosen to represent an area similar to the Skull Creek site prior to construction of the marina. The marina and control sites are approximately equidistant from Port Royal Sound, and are located within or adjacent to extensive salt marshes that are characterized by numerous intertidal oyster banks and large stands of smooth cord grass (Spartina alterniflora). The northwest shore of Pinckney Island in Mackay Creek (Figure 1A) served as the control site for oyster spat recruitment studies. Sediments and adult oysters were collected from another site on the opposite shore of Mackay Creek (Figure 1B) for contaminant, gametogenesis and condition index analyses. Finally, grab samples were collected from a shallow subtidal area near the mouth of a small tributary of Mackay Creek (Figure 1C) for benthic macrofaunal and sediment composition analyses.

Contaminants Analyses

Methods

Samples of surface sediments, water and oysters were collected intertidally during two or more seasons at both the marina and control sites. Each oyster sample consisted of the soft tissue from a composite of 30 oysters, all having a minimum shell
Figure 1. Location of marina and control sites. Control site (A) was used for the recruitment studies; control site (B) was used for the oyster condition index and gametogenesis studies; and control site (C) was used for the benthic community study.

Island
Hilton Head Island

Figure 1. Location of marina and control sites. Control site (A) was used for the recruitment studies; control site (B) was used for the oyster condition index and gametogenesis studies; and control site (C) was used for the benthic community study.