CHANGE AND RECOVERY OF PHYSICAL AND BIOLOGICAL
 CHARACTERISTICS AT BEACH AND BORROW AREAS IMPACTED BY THE 2005 FOLLY BEACH RENOURISHMENT PROJECT

Prepared by:

Derk C. Bergquist
Stacie E. Crowe

Martin Levisen

Robert F. Van Dolah

Marine Resources Research Institute
Marine Resources Division
South Carolina Department of Natural Resources
Post Office Box 12559
Charleston, SC 29422

Submitted to:

U.S. Army Corps of Engineers

Charleston District
Post Office Box 919
Charleston, South Carolina 29402

Published by:
South Carolina Department of Natural Resources
Marine Resources Division

Technical Report Number 102
February 2008

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1
BACKGROUND 3
MATERIALS AND METHODS 6
Study Site and Study Design 6
General 6
Borrow Area 6
Beach 8
Field and Laboratory Methods 8
Borrow Area 8
Beach 9
Data Management and Data Analysis 11
Database Development 11
Statistical Analyses 11
RESULTS 14
Borrow Area 14
Sediment Characteristics 14
Biological Communities 18
Beach 33
Physical Characteristics 33
Ghost Crab (Ocypode quadrata) Populations 36
Ghost Shrimp (Callichirus major) Populations 41
DISCUSSION 42
Borrow Area 42
Beach 49
CONCLUSIONS 56
RECOMMENDATIONS 58
LITERATURE CITED 60
APPENDICES 67
Appendix 1: List of station locations and depths for sites sampled at the 67
Folly Island borrow and reference areas
Appendix 2: Characteristics of surficial sediment cores collected from 69
grab samples taken at Folly Island borrow area and reference area.
Appendix 3: Characteristics of composite sediment cores collected from 71 Folly Island at nourished and reference beach sites
Appendix 4: Summary of benthic macrofauna collected in the Folly 75
Island borrow and reference areas.
Appendix 5: Abundances of benthic species collected in the Folly Island 82
borrow and references areas
Appendix 6: Summary of Ocypode quadrata and Callichirus major 110
counted at the Folly Island nourished and reference areas.

EXECUTIVE SUMMARY

The response and recovery of subtidal sediment borrow areas and beach ecosystems to nourishment activities remain poorly understood. Folly Beach, SC, was nourished between April and October 2005 using sediment from a nearshore subtidal borrow area. The South Carolina Department of Natural Resources monitored both the borrow area and the beach to determine the impacts associated with these activities and to determine whether these systems showed evidence of recovering over a one year period following the impacts.

Benthic sediment samples were collected from the dredged borrow area and a nearby non-dredged reference area prior to dredging and at multiple time points following dredging in order to compare temporal changes in sediment characteristics and benthic infaunal community composition. Sediments within the borrow area became increasingly fine (more silt/clay, larger sand phi size, less calcium carbonate) following dredging and showed little evidence of recovery one year after completion of dredging. The biological community also changed following dredging and continued to diverge from the reference area over the next year, likely in response to changing sediment characteristics. The refilling of the borrow area with fine (muddy) material is probably due to dredging to 3 meters below grade and the proximity of the borrow area to Charleston Harbor, a source of terrigenous sediments. The current accumulation of muddy sediments could prevent this area from being used in future nourishment projects. We recommend that, whenever possible, borrow areas in South Carolina be dredged to less than 3 meters below grade and located at the southern ends of barrier islands where beach-compatible sands tend to accumulate.

Shore-perpendicular transects in nourished areas and non-nourished reference areas of Folly Beach were monitored prior to dredging and during multiple time points following dredging to evaluate temporal changes in sediment characteristics and densities of burrowing macro-invertebrates, specifically the ghost crab Ocypode quadrata and the ghost shrimp Callichirus major. Subaerial beach width increased substantially following nourishment but decreased to less than half of the post-nourishment width within one year. Sediment characteristics did not change following nourishment. Burrowing macroinvertebrates showed little evidence of nourishment impact. The only exceptions were a tendency of 1) densities of ghost crabs within the dunes to decrease along a gradient of increasing beach width and 2) ghost shrimp to increase following nourishment.

Differences in ghost crab densities between nourished and reference areas prior to nourishment, perhaps as a result of differences in development and pedestrian traffic, may have interfered with the ability to detect impacts from nourishment activities. We recommend that careful matching of beach sands and well-replicated and designed monitoring studies continue as part of future nourishment projects to ensure nourishment activities have minimal impact on South Carolina's beach ecosystems.

BACKGROUND

Nourishment currently represents the most widely used strategy for countering beach erosion in the eastern United States. In most cases, beach nourishment involves dredging sediments from a nearshore subtidal source, such as a sandflat, and placing that sediment onto the shoreface, in essence replacing the sand that had eroded. As a result, this process has the potential to directly impact the physical characteristics and biological communities of two distinct systems: the beach/dune complex where the sand is placed and subtidal sandflats where the sand is dredged (borrow area). Despite the widespread use of nourishment to combat erosion, the level of impact to these systems and the time needed for the systems to recover from the disturbance remain uncertain.

Past studies have shown that beach ecosystems respond quite variably to nourishment (Nelson 1993; NRC 1995; Valverde et al. 1999; Nordstrom 2005; Spreybroek et al. 2006). In most cases, efforts are made to match borrow site sediment characteristics with the beach upon which they are to be deposited. However, some studies have shown significantly elevated levels of fine-grained sediments and shell material on the beach following nourishment (Peterson et al. 2000, 2006) or the apparent transport of fine material in the beach fill offshore (Rakocinski et al. 1996). In South Carolina, the sediment match historically has been good, with post-nourishment sediment characteristics matching pre-nourishment characteristics within six months (Van Dolah et al. 1994; Jutte et al. 1999a). Poor sediment match affects both the functioning of a beach ecosystem as well as its recreational value.

The biological responses to beach nourishment vary widely amongst different taxa and nourishment projects. Infaunal invertebrates, the base of the consumer food web
in the intertidal zone, decline immediately following nourishment, but they typically recover within six months (Van Dolah et al. 1994; Rakocinski et al. 1996; Jutte et al. 1999a). In some cases where the sediment match is very poor, several particularly important infaunal prey taxa (such as Donax spp. and Emerita spp.) decline sharply and remain suppressed for several weeks (Peterson et al. 2006). Burrowing beach macroinvertebrates such as ghost crabs and ghost shrimp (in South Carolina, Ocypode quadrata and Callichirus major, respectively) fill important roles in processing and aerating sediments, scavenging beach detritus and serving as prey for shorebirds. Numerous studies indicate these invertebrates are severely impacted by nourishment (Peterson et al. 2000; Bilodeau and Bourgeois 2004; Dixon 2007), but the time required for these species to recover remains unknown. Nourishment activities do not seem to affect longer-term responses by fish, but the turbidity plume created by beach filling activities can induce behavioral changes in some species (Wilber et al. 2003). Birds may respond negatively to nourishment activities if sediment characteristics and prey abundances are dramatically altered (Peterson et al. 2006). Sea turtles may benefit from nourishment through the creation of new nesting habitat, but poor sediment matches and/or severely altered beach profile (particularly the formation of vertical scarps) can reduce sea turtle nesting success (Grain et al. 1995).

Much less is known about the changes in subtidal physical characteristics and biological communities following dredging at the borrow site. Sediment characteristics often change dramatically in the pit left by the dredging operation. In some cases, dredging uncovers shell material or carbonate rubble, and, in most cases, silts and clays settle into the pit (Van Dolah et al. 1992; Van Dolah et al. 1994; Jutte et al. 2001a).

While some borrow pits refill quickly with beach-compatible material, others refill with silt and clay that is then covered by sand or do not refill at all (Van Dolah et al. 1998). The latter two situations prevent future use of those areas as sources of beach fill and tend to be associated with borrow pits deeper than 3 m below grade and/or those located in close proximity to sources of terriginous fine material such as tidal inlets and rivers. Not surprisingly, dredging reduces benthic invertebrate density and diversity in the short term (Van Dolah et al. 1994; Jutte et al. 1999b). Longer-term recovery rates vary significantly, with longer recovery times associated with borrow pits that were dredged further below grade and those that accumulated substantial amounts of silt and clay (Jutte et al. 2002).

Sediment composition (sand, mud and shell) represents one of the most important characteristics for determining the composition and density of benthic invertebrate communities (McLachlan 1996; Defeo and McLachlan 2005). In both systems (beach and subtidal borrow), invertebrates form the base of the consumer food web, serving as prey for larger invertebrates and vertebrates. As a result, we focused monitoring efforts on these potentially important indicators of ecosystem response and recovery. Specifically, the purposes of this study were: 1) to determine the impact on and recovery of sediment characteristics and invertebrate communities following dredging in the borrow area, and 2) to determine the impact on and recovery of sediment characteristics and burrowing invertebrates following placement of fill on the shoreface of Folly Beach, SC. The project described here utilized a Before-After Control-Impact (BACI) design in order to document the changes in the impact areas (borrow area and nourished beach) relative to un-impacted control (reference) areas. Both impact and reference areas were
sampled multiple times following impact in order to assess the longer-term recovery (one year) of these resources.

MATERIALS AND METHODS

Study Site and Study Design

General

Folly Island, a barrier island within Charleston County, South Carolina, includes approximately 8.4 km of Atlantic shoreface (Fig 1). The island supports a population of about 2,000 residents and a healthy tourist industry largely dependent upon beach access. Due to erosion, the Atlantic shoreface of Folly Island was nourished in 1991 using material dredged from the Folly River. Ongoing erosion, combined with an active hurricane season in 2004, resulted in another renourishment effort in 2005. The 2005 renourishment project included the placement of approximately two million cubic yards of fill on approximately 8.0 km of Folly Beach extending from the former U.S Coast Guard base on the northeast end through the Charleston County Park on the southwest end (Fig. 1).

Borrow Area

The borrow area was located approximately 5.3 km offshore (Figure 1). SCDNR performed an early reconnaissance and located a reference area similar to the borrow area based upon gross sediment characteristics. Arc-GIS was used to randomly select ten sampling stations in the borrow area and the reference area prior to dredging (Appendix
1). Previous studies have indicated that ten samples per sampling area and date are
sufficient to characterize the dominant benthic taxa (e.g., Van Dolah et al. 1994; Jutte et al. 1999a). Because dredging occurred within only a portion of the borrow area, those stations falling outside of the actual dredged pit were relocated to random locations within the dredged pit for all post-dredging time frames. The stations at the borrow and reference areas were sampled immediately prior to dredging (Pre), immediately following dredging (Post), six months after (6-mo Post) and one year after (12-mo Post) corresponding to April 10, 2005, November 4, 2005, May 5, 2006, and November 1, 2006, respectively.

Figure 1. Map of Folly Beach, SC showing locations of borrow area and reference area and the location of the monitored beach (red box). Inset shows locations of study sites on monitored beach. Closed circles -- study sites in nourished area, Open circles - study sites in reference area.

Beach

Although most of the length of the beach was nourished, monitoring efforts were focused on the northeast portion of the island (Figure 1 inset) since this portion of the island also had a substantial stretch of beach that was not nourished. The non-nourished area was used as the reference site and compared to a portion of the nearby nourished area to minimize the effect of alongshore environmental variation that might confound the comparison of nourished and not nourished areas. Three sampling sites were identified in each of the impact and reference areas. These sites were sampled one time immediately prior to dredging (Pre) and four times following dredging, immediately after (Post), three months after (3-mo Post), six months after (6-mo Post) and one year after (12-mo Post), corresponding to April 5, 2005, June 8, 2005, September 15, 2005, January 3, 2006 and May 24, 2006, respectively.

Field and Laboratory Methods

Borrow Area

Randomly-selected station positions were located using a global positioning system (GPS). A $0.043 \mathrm{~m}^{2}$ Young grab was deployed from a boat and a single sample collected at each of the ten sites within the borrow area and the reference area. Any sample in which the grab did not penetrate evenly to at least 8.0 cm depth $(80 \%$ of the total depth of the grab) was discarded and re-collected. Each sample was sub-sampled for analysis of sediment characteristics (percent sand, silt, clay, CaCO_{3}, organic matter content, and sand grain size distribution) using a 3.5 cm diameter plastic tube inserted through the top of each grab to the bottom of the sample. The remainder of the grab
sample, representing approximately $0.04 \mathrm{~m}^{2}$ of the bottom surface area, was washed through a 0.5 mm -mesh sieve. Organisms and sediment retained on the sieve were preserved in a buffered solution of 10% formalin/seawater with rose bengal stain.

Sediment composition subsamples were analyzed for percentages (by weight) of sand, silt, clay, and calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ using procedures described by Folk (1980) and Pequegnat et al. (1981). Sand fractions were dry-sieved using a Ro-tap mechanical shaker, and grain size was determined by using fourteen 0.5 phi-interval screens, where $\mathrm{phi}=-\log _{2}($ grain diameter in mm$)$ according to the Udden-Wentworth Phi classification (Brown and McLachlan 1990). Measurements of total organic matter (TOM) were obtained by weighing a dried portion of the subsample, ashing it at $550^{\circ} \mathrm{C}$ in a muffle furnace for two hours, and re-weighing it as described by Plumb (1981).

Benthic organisms were sorted from retained material under a magnifying lens, identified to the lowest possible taxonomic level, and enumerated by experienced taxonomists. A voucher collection was created for the project and maintained by the Environmental Research Section at MRRI.

Beach

At each of the six sampling sites, five randomly located, shore-perpendicular 4.0 m wide transects were established along a 100 m stretch of beach (Figure 2). Each transect extended from the primary dune crest at the landward end to the lower intertidal zone at the seaward end. Starting at the dune crest, the numbers of active ghost crab (Ocypode quadrata) burrows, identified by tracks around the opening of the burrow (Wolcott 1978), and callianassid shrimp (Callichirus major) burrows were counted
within each $5.0 \mathrm{~m}\left(20 \mathrm{~m}^{2}\right)$, section of the transects. This stratification was meant to allow the investigation of changes in ghost crab and shrimp populations along the beach profile. Sampling started approximately 2 hours prior to low tide and continued until slack low tide. Along each transect a composite set of three 3.5 cm diameter push cores was collected for sediment composition and grain size analysis. These three cores were collected in each of the three most seaward 5.0 m sections of each transect where most beach fauna would be found. All sediment samples were treated as described above for borrow study site sediments. The locations of the dune crest and wrack line were noted along each transect in order to allow the transect sections, or distances down the beach profile, to be roughly inter-calibrated amongst transects and stations (Figure 2).

Figure 2. Layout of transects at each beach site extending from the dune crest to the lower intertidal zone. Transects were randomly located along a 100 m stretch of beach within each site.

Data Management and Analysis

Database Development

A project database was constructed using Microsoft Access. The database included project data such as beach and borrow area locations, time of sampling, type of sampling site (impact and reference), sediment composition data, borrow site infaunal data and beach burrowing macrofauna data. This was constructed to act as a template for all future monitoring projects so that individual databases can be integrated into a comprehensive state-wide beach nourishment database.

Statistical Analyses

Borrow and reference area data were first analyzed to detect the impact of dredging activities on sediment characteristics and infaunal communities. For this analysis, pre-dredge and immediate post dredge time frames from the borrow and reference areas were compared using a two-way ANOVA with Time Frame (Pre and Post) and Area (borrow and reference) as factors, with the interaction term in this model (Area X Time Frame) indicating whether a significant change had occurred at the borrow area relative to the reference area. To examine the change in and recovery of sediment characteristics and infaunal communities following dredging, two analyses were performed. First a two-way ANOVA with Time Frame (Post, 6-mo Post, and 12-mo Post) and Area (borrow and reference) as factors was used to examine whether the two areas overall changed similarly through time. Second, to examine the recovery of the borrow area, the following a-priori contrasts of the differences between borrow and reference responses were performed using t-tests:

	Pre	Post
6-mo Post	A	C
12-mo Post	B	D

Significant differences in contrasts A and/or B indicate that the difference between the borrow and reference areas at a time point had not returned to its pre-dredge condition, hence recovery had not occurred. Significant differences in C and/or D indicate that the differences had changed since the impact occurred. In more complex situations, for example, where all contrasts were significant, more in-depth examination can show whether the difference was intermediate to Pre and Post conditions (recovering but not fully recovered) or had changed to a more extreme condition (response was degrading in absence of continued impact). Multivariate ordination of borrow and reference area communities was performed using canonical correspondence analysis (CCA) in PC-Ord (MjM Software Design) to examine successional vectors in community response and recovery. The analyses were performed on individual station communities (80 total: 2 areas X 4 time frames X 10 stations) and on area-time communities (8 total: 2 areas X 4 time frames). The species matrix consisted of all species that represented at least 0.5% of all individuals collected in the study (27 total species), and the environmental matrix consisted of the sediment characteristics (sand phi size, silt/clay content, calcium carbonate content and total organic matter) and an indicator variable for sampling season (spring or fall). Both matrices were log-transformed to improve normality. Bray-Curtis similarities (S) were calculated for each pair of area-time communities using Primer 6 software (Primer-E Ltd, 2007).

The calculation of beach macrofauna densities was approached in several ways. First, the number of individuals per square meter (areal density) reflects the response of these fauna to overall available beach habitat (are the fauna filling the available habitat to pre-nourishment densities?), and number per linear meter (linear density) reflects the impact of nourishment on the total number of crabs and shrimp using any given unit of beach length (has the overall number of individuals increased or decreased in response to nourishment activities?) Because portions of the beach represent unlikely habitat for one or both of the target taxa, the same densities above were calculated for specific habitats. For ghost crabs, dune densities were calculated based on burrow counts within 10 m of the dune crest, and tide line densities were calculated based on burrow counts within 5 m of the lower wrack line (approximate high tide limit). If these habitats overlapped on a particular transect, the data from that transect was not included in any analyses. For shrimp, intertidal densities were calculated from the number of burrows seaward of the lower wrack line.

Beach macrofauna densities were analyzed with a nested repeated measures ANOVA with Area (Nourished or Reference) and Time Frame as factors. In this analysis, transects were nested within sites (5 transects per study site), and sites were nested within areas (three sites per area). Due to a change in the beach nourishment schedule, one of the nourished sites ("Nourished A") could not be sampled during the immediate Post time frame. This resulted in an unbalanced statistical design that required analysis of the beach data in a piecemeal manner. Because the primary question was whether the physical and biological characteristics of the nourished and reference areas were more or less different during the post-nourishment time frames (Post, 3-mo, 6-mo,
and 12-mo Post) than they were in the Pre nourishment time frame, four nested repeated measures ANOVA's were performed. A significant Area X Time Frame interaction term would indicate whether the two areas were behaving differently relative to each other during post nourishment time frames than during the pre nourishment time frame.

RESULTS

Borrow Area

Sediment Characteristics

Of the four primary sediment characteristics examined (silt and clay content, calcium carbonate content, sand phi size, and total organic matter), silt and clay content and calcium carbonate content showed a significant change at the borrow area relative to the reference area (Table 1). Silt and clay content was not significantly different between borrow and reference areas during the Pre time frame, but was significantly higher at the borrow area than the pre-dredging values and the post-dredging reference area value during the Post time frame (Figure 3A). Post-dredging, silt and clay content of the borrow area sediments was 3.4 X higher than the borrow area pre-dredging, while silt clay content of the reference area decreased slightly. Calcium carbonate content was not significantly different between borrow and reference areas during the Pre time frame, but was significantly lower at the borrow area than the pre-dredging values and the postdredging reference area value during the Post time frame (Figure 3B). Calcium carbonate content of the borrow area post-dredging was one-sixth of that at the borrow area predredging, while calcium carbonate content of the reference area decreased only slightly. Phi size increased (sands became finer) during the Post time frame at borrow and

Table 1. Results of two-way ANOVAs testing for the differential response of sediment characteristics at borrow and reference areas during Pre and Post time frames.
Significant interaction terms ("Area X Time Frame") indicate that borrow and reference areas responded in a significantly different manner before and after dredging activities.

Parameter	Source	df	MS	F	p
Silt/Clay					
	Area	1	0.5707	9.98	0.003
	Time Frame	1	0.0635	1.11	0.299
	Area X Time Frame	1	0.4581	8.01	0.008
	Error	36			
	Total	39			
Calcium Carbonate					
	Area	1	0.3186	10.17	0.003
	Time Frame	1	0.3686	10.96	0.002
	Area X Time Frame	1	0.2324	6.91	0.013
	Error	36			
	Total	39			
Phi Size					
	Area	1	14.62	70.28	<0.001
	Time Frame	1	3.78	18.16	<0.001
	Area X Time Frame	1	0.54	2.58	0.117
	Error	36			
	Total	39			
TOM					
	Area	1	0.4797	3.43	0.072
	Time Frame	1	0.0501	0.36	0.553
	Area X Time Frame	1	0.0956	0.68	0.414
	Error	36			
	Total	39			

reference areas, but the increase in phi size at the borrow area was significant and over twice the increase observed at the reference area (Figure 3C). Total organic matter (TOM) remained constant between Pre and Post time frames at the reference area, but increased three-fold (although not significantly) at the borrow area (Figure 3D).

The differences between borrow and reference area sediment characteristics (borrow characteristic sample i at time t - mean reference characteristic at time t) varied through time (Pre, Post, 6-mo Post, 12-mo Post) during the 15.5 months of the study.

This difference in temporal response was significant for silt and clay content $\left(\mathrm{F}_{3,36}=3.51\right.$, $\mathrm{p}=0.025)$, calcium carbonate content $\left(\mathrm{F}_{3,36}=7.49, \mathrm{p}=0.001\right)$, and sand phi size $\left(\mathrm{F}_{3,36}=\right.$ 9.45, $\mathrm{p}<0.001$), but not for total organic matter $\left(\mathrm{F}_{3,36}=0.73, \mathrm{p}=0.541\right)$. The difference in silt and clay content between the areas increased post-dredging and remained significantly elevated even 12 months after the cessation of dredging operations (Figure 4A). The difference in calcium carbonate content decreased significantly following dredging, appeared to have recovered to a content intermediate to Pre and Post values at 6-mo Post, but then at 12-mo Post remained at a significantly lower content than Pre values (Figure 4B). The difference in sand phi size increased significantly post-

Figure 3. Mean (+/-SE) sediment characteristics at borrow and reference areas during Pre- and Post-dredging time frames. Different letters indicate significant differences using Tukey's t-tests.
dredging, continued rising through 6-mo Post and remained significantly elevated 12months after the completion of dredging (Figure 4C). Total organic matter increased following dredging and remained at least somewhat elevated through 12-mo Post, but the post-dredging values were not significantly different than pre-dredge values (Figure 4D).

Figure 4. Mean differences (+/-SE) between reference and borrow area sediment characteristics during Pre-, Post-, 6 mo Post-, and 12 mo Post-dredging time frames. Dotted line indicates difference between two areas before dredging occurred. *-significantly different than Pre time frame with $p<0.05$, **--significantly different than Pre time frame after correction for multiple comparisons using Tukey's t-test, $广$-significantly different than Post time frame with $p<0.05$, \dagger--significantly different than Post time frame after correction for multiple comparisons using Tukey's t-test.

Biological Communities

Total infaunal density responded significantly at the borrow area relative to the reference area (Table 2), but the changes in species richness, evenness (Jaccard's index) and diversity (Shannon-Wiener diversity index) of the benthic community at the borrow area were not significantly different than at the reference area (Table 2). Between predredging and post-dredging time frames, infaunal density decreased 84% at the borrow area but only decreased 31% at the reference area (Figure 5A). Although not statistically

Table 2. Results of two-way ANOVAs testing for the differential change of general biological community characteristics at borrow and reference areas during Pre and Post time frames. Significant interaction terms ("Area X Time Frame") indicate that borrow and reference areas changed in a significantly different manner between pre- and postdredging time frames.

Parameter Source	df	MS	F	p
Total Fauna Abundance				
Area	1	0.324	1.62	0.532
Time Frame	1	2.912	14.55	0.001
Area X Time Frame	1	1.049	5.24	0.028
Error	36	0.200		
Total	39			
Species Richness (No. of Species)				
Area	1	2.058	1.69	0.202
Time Frame	1	9.674	7.93	0.008
Area X Time Frame	1	4.602	3.77	0.060
Error	36	1.219		
Total	39			
Species Evenness (J')				
Area	1	0.001	0.06	0.813
Time Frame	1	0.044	3.34	0.076
Area X Time Frame	1	0.022	1.65	0.208
Error	35	0.013		
Total	38			
Species Diversity (H')				
Area	1	11.552	2.27	0.141
Time Frame	1	9.580	1.88	0.179
Area X Time Frame	1	3.554	0.70	0.409
Error	36	5.097		
Total	39			

Figure 5. Mean (+/-SE) benthic community characteristics at borrow and reference areas during Pre- and Post-dredging time frames. Different letters indicate significant differences using Tukey's t-tests.
significant, species richness declined by approximately 50% at the borrow area, but decreased only slightly at the reference area between the pre- and post-dredging time frames (Figure 5B). Species evenness increased and species diversity decreased at the borrow area following dredging while very little change occurred at the reference area, but these differences were not significant (Figure 5C,D).

In examining recovery of the community, the differences in general community characteristics between the borrow and reference area (borrow characteristic sample i at time t - mean reference characteristic at time t) varied through time (Pre, Post, 6-mo Post,

12-mo Post) during the 15.5 months of the study. This difference in temporal response was significant for total infaunal abundance ($\mathrm{F}_{3,36}=18.85, \mathrm{p}<0.001$), species richness $\left(\mathrm{F}_{3,36}=6.34, \mathrm{p}=0.001\right)$, and species evenness $\left(\mathrm{F}_{3,35}=8.62, \mathrm{p}<0.001\right)$, but not for species diversity $\left(\mathrm{F}_{3,36}=1.12, \mathrm{p}=0.353\right)$. The total infaunal abundance at the borrow area decreased substantially relative to the reference area immediately following dredging, remained relatively low six months later, and decreased even further twelve months post-dredging (Figure 6A). Similarly, species richness at the borrow area

Figure 6. Mean differences (+/-SE) between reference and borrow area benthic community characteristics during Pre-, Post-, 6 mo Post-, and 12 mo Post-dredging time frames. Dotted line indicates difference between two areas before dredging occurred. *--significantly different than Pre time frame with $p<0.05,{ }^{* *}$--significantly different than Pre time frame after correction for multiple comparisons using Tukey's t-test, $广$-significantly different than Post time frame with $p<0.05$, \dagger--significantly different than Post time frame after correction for multiple comparisons using Tukey's t-test.
declined relative to the reference area immediately following dredging, remained depressed six months later, and decreased even further twelve months post-dredging (Figure 6B). Species evenness remained similar at the borrow and reference areas through the six month post-dredging time frame, but then increased significantly at the borrow area relative to the reference area twelve months post-dredging (Figure 6C). Species diversity declined at the borrow area relative to the reference area post-dredging and then by twelve months post-dredging returned to pre-dredging values, however, none of the changes in species diversity were significant (Figure 6D).

Of the five higher taxa groups examined (amphipods, mollusks, polychaetes, other taxa, and other crustaceans), only the "other taxa" group changed significantly at the borrow area relative to the reference area immediately following dredging (Figure 7). The numbers of individuals within the "other taxa" group (primarily nematodes, ectoprocts, and cumaceans) were not significantly different between borrow and reference areas during the Pre time frame, but were significantly lower at the borrow area post dredging than at either area pre-dredging or at the reference area following dredging (Figure 7D). Post-dredging, the number of "other taxa" at the borrow area decreased 92% from pre-dredging, while the number of "other taxa" at the reference area decreased 33% percent. The number of mollusks decreased $80-90 \%$, a significant decrease, during the Post time frame at both borrow and reference areas (Figure 7B). Substantial decreases in number of amphipods, polychaetes, and other crustaceans were observed at the borrow area during the Post time frame (Figure 7C,D,E). Modest decreases in abundance of polychaetes and other crustaceans were noted at the reference area between

Figure 7. Mean (+/-SE) number of organisms in higher taxa groups ($A-E$) and percent of organisms in higher taxa groups (F-J) at borrow and reference areas during Pre- and Post-dredging time frames. Different letters indicate significant differences using Tukey's t-tests.
the Pre and Post time frames, while the number of amphipods increased six-fold (although not significantly) at the reference area.

The percent abundance of each of the taxonomic groups varied between Pre and Post time frames (Figure 7), however, only the percentage of organisms in the "other taxa" group changed significantly at the borrow area relative to the reference area following dredging (Figure 7I). The percentage of "other taxa" was the same at the two areas during the Pre time frame, but was significantly higher at the reference area than the borrow area during the Post time frame. This change in "other taxa" was driven by a non-significant increase at the reference area and a non significant decrease in the borrow area following dredging. The percentage of mollusks at the reference area during the Pre time frame was significantly higher than those at the borrow area during the Pre and Post time frames (Figure 7G). At the borrow area, polychaetes represented the greatest fraction of the macrofaunal community during both the Pre and Post time frames, and the proportion increased 20% in the borrow area post dredging while comprising a similar percent of reference communities both pre and post (Figure 7H). Coincident with the increase in percent polychaetes in the borrow area, there were substantial decreases in the percentage of mollusks and "other taxa". The community at the reference area was dominated by mollusks during the Pre time frame and by polychaetes in the Post time frame. The percentage of mollusks decreased 25% and other crustaceans decreased 4% at the reference area post dredging, while the percentage of amphipods increased 16% and other taxa increased 9%, although these changes were not statistically significant (Figure 7F-J).

Figure 8. Mean differences (+/-SE) between reference and borrow area abundances of organisms in higher taxa groups (no/0.04m ${ }^{2}$ grab; $A-E$) or percent organisms in higher taxa groups (F-J) during Pre-, Post-, 6 mo Post-, and 12 mo Post-dredging time frames. *--significantly different than Pre time frame with $p<0.05$, **--significantly different than Pre time frame after correction for multiple comparisons using Tukey's t-test, 广-significantly different than Post time frame with $p<0.05$, \dagger--significantly different than Post time frame after correction for multiple comparisons using Tukey's t-test.

The difference between abundance of organisms in the higher taxa groups at the borrow and reference areas varied throughout the four sampling periods of this study. This difference in temporal response was significant for all groups which included amphipods ($\mathrm{F}_{3,35}=33.67, \mathrm{p}<0.001$), mollusks ($\mathrm{F}_{3,36}=18.26, \mathrm{p}<0.001$), polychaetes $\left(\mathrm{F}_{3,36}=19.73, \mathrm{p}<0.001\right)$, "other taxa" $\left(\mathrm{F}_{3,36}=33.67, \mathrm{p}<0.001\right)$, and other crustaceans $\left(\mathrm{F}_{3,36}=6.77, \mathrm{p}=0.001\right)$. Amphipod abundance at the borrow area decreased significantly relative to the reference area immediately post-dredging, remained low six months later, but then increased significantly during the 12-mo Post time frame (Figure 8A). Mollusk abundance remained similar at borrow and reference areas through the 6mo Post time frame, but then decreased significantly at the borrow area relative to the reference area twelve months post-dredging (Figure 8B). Polychaete abundance at the borrow area declined relative to the reference area immediately following dredging, increased significantly six months later, then decreased again twelve months postdredging (Figure 8C). Abundance of other taxa organisms decreased steadily from the Pre time frame to the 12-mo Post time frame, while relative abundance of other crustaceans declined at the borrow area during the Post time frame, remained depressed six months later, and significantly decreased even further by twelve months postdredging (Figure 8D,E).

The difference in temporal response of the percentages of higher taxa groups between borrow and reference areas was significant for percent amphipods $\left(\mathrm{F}_{3,36}=3.13\right.$, $\mathrm{p}=0.041)$, percent mollusks $\left(\mathrm{F}_{3,36}=2.79, \mathrm{p}=0.051\right)$, percent polychaetes $\left(\mathrm{F}_{3,36}=7.75, \mathrm{p}\right.$ <0.001), and percent "other taxa" $\left(\mathrm{F}_{3,36}=22.32, \mathrm{p}<0.001\right)$, but not for other crustaceans $\left(\mathrm{F}_{3,36}=1.23, \mathrm{p}=0.341\right)$. The percentage of amphipods decreased significantly at the
borrow area relative to the reference area post-dredging, remained low six months post dredging, and increased significantly relative to post-dredging values twelve months post-dredging (Figure 8F). The percent abundance of mollusks increased at the borrow area relative to the reference area from the Pre to the Post time frame, then continued to increase through the 12-mo Post time frame (Figure 8G). The percent of polychaetes increased significantly at the borrow area relative to the reference area through the 6-mo Post time frame, then decreased significantly during the 12-mo Post time frame but still remained elevated relative to the Pre time frame (Figure 8H). The percentage of organisms in the "other taxa" group showed a steady and significant decline in abundance at the borrow area through six month post-dredging, then increased relative to Post time frame values during the 12-mo Post time frame (Figure 8I). The percentage of other crustacean taxa increased at the borrow area relative to the reference area post-dredging and then decreased six months post-dredging and remained low twelve months postdredging, however, none of these changes were significant (Figure 8J).

Canonical correspondence analysis (CCA) was used to further examine the infaunal community structure at the borrow and reference areas. The first two axes generated by the CCA of individual station communities explained only 19.4% and 7.2% of the variability in infaunal community structure in the borrow and reference areas (Table 3). The first two axes for averaged area-time communities explained 44.4% and 19.7% of the variability in infaunal community structure at borrow and reference areas (Table 3). The first axis of both analyses was primarily associated with differences in sediment characteristics, with sand phi size, silt/clay content, and total organic matter increasing and calcium carbonate content decreasing towards the left of the CCA bi-plot

Table 3. Results of canonical correspondence analysis on borrow and reference area station communities and area-time communities. p-values of each axis were derived using 500 Monte-Carlo simulations.

	Axis 1	Axis 2	Axis 3
Station Communities			
Eigenvalue	0.446	0.167	0.034
\% Variance Explained	19.4	7.2	1.5
Cumulative \% Variance Explained	19.4	26.6	28.1
p-value	0.0020	0.0020	0.0260
Area-Time Communities			
Eigenvalue	0.301	0.134	0.058
\% Variance Explained	44.4	19.7	8.6
Cumulative \% Variance Explained	44.4	64.1	72.7
p-value	0.0160	0.2100	0.0640

(Figure 9). The second axis was primarily associated with the season during which sampling occurred with spring in one direction and fall in the opposite direction (Figure 9). Reference and borrow area communities generally clustered together pre-dredging, but diverged sharply post-dredging. Reference communities oscillated along Axis 2 as seasons changed, but did not shift substantially along Axis 1 (Figure 9B). Following dredging the borrow area communities shifted left along Axis 1, oscillated seasonally along Axis 2 and never returned to pre-dredging conditions along Axis 1 (Figure 9B).

The similarities amongst the Area-Time communities were further examined using Bray-Curtis similarities. The most similar communities were the borrow and reference during the Pre time frame $(\mathrm{S}=80$; Table 4$)$. Through 12 month post-dredging, the community in the reference area remained fairly similar to the Pre time frame reference community ($\mathrm{S} \geq 67$), and the Pre time frame borrow community ($\mathrm{S} \geq 62$).

However, the communities in the borrow area following dredging were much less similar to the Pre time frame at either the reference $(\mathrm{S} \leq 42)$ or borrow area $(\mathrm{S} \leq 54)$ or the postdredging time frames at the reference area ($\mathrm{S} \leq 49$).

Figure 9. Bi-plot of A) individual station communities and B) area-time communities using Canonical Correspondence Analysis (CCA). Solid arrows indicate direction of increasing environmental characteristics. Dashed arrows indicate temporal change sequence in each area. Open circles-reference, closed circles-borrow. Pr = Pre, Po $=$ Post, $6=6$-month Post and $12=12$-mo Post time frames.

Table 4. Bray-Curtis similarities amongst each pair of Area-Time communities.

		Reference				Borrow		
		Pre	Post	6-mo Post	12-mo Post	Pre	Post	6-mo Post
Reference	Post	68						
	6-mo Post	73	73					
	12-mo Post	67	69	74				
Borrow	Pre	79	70	73	62			
	Post	28	42	42	28	39		
	6-mo Post	42	44	48	26	54	55	49

The composition of the more abundant taxa (representing $60-70 \%$ of all fauna collected) changed substantially at the borrow area relative to the reference area between Pre and Post time frames (Table 5). The reference and borrow areas shared five of their ten most abundant (dominant) taxa (Ensis directus, Crassinella martinicensis, Oxyurostylis smithi, Clymenella torquata and the Nematoda) prior to dredging, but did not share any dominant taxa post-dredging. Most of the dominant taxa shared by the borrow and reference areas during the Pre time frame were no longer amongst the dominant taxa during the Post time frame (Table 5). Four of the dominant taxa at the reference area during the Pre time frame (Crassinella lunulata, Bhawania heteroseta, Cyathura burbancki and Nematoda) remained among the dominant taxa during the Post time frame, whereas only two of the dominant taxa at the borrow area during the Pre time frame (Spiophanes bombyx and Mediomastus sp.) were also amongst the dominant taxa during the Post time frame. Those dominant taxa present at the reference area during both the Pre and Post time frames were found in most samples collected ($60-90 \%$), suggesting they were widely distributed. In the borrow area, however, the two

Table 5. Ten most abundant benthic taxa (dominant taxa) collected at the reference and borrow area during pre-nourishment (Pre), immediate Post nourisment (Post), 6 months post nourishment (6 mo Post), and 12 months post nourishment (12 mo Post) sampling. Abundance values represent the total number of individuals collected in ten samples ($0.04 m^{2}$ per sample). Higher taxa codes are $P=$ Polychaete, $A=$ Amphipod, $M=$ Mollusk, and $O=$ Other taxa.

Reference Area					Borrow Area				
SpeciesName	$\begin{aligned} & \text { İ } \\ & \text { O} \\ & \text { © } \\ & \text { ָ } \\ & \hline \end{aligned}$	Total Abundance	Percent Abundance	Percent of stations where present	SpeciesName	$\begin{aligned} & \text { तo } \\ & \text { on } \\ & 0.0 \\ & \overleftarrow{N} \\ & \hline \end{aligned}$	Total Abundance	Percent Abundance	Percent of stations where present
Pre					Pre				
Ensis directus	M	159	11.01	90	Spiophanes bombyx	P	544	19.70	70
Crassinella martinicensis	M	134	9.28	80	Oxyurostylis smithi	O	497	18.00	90
Crassinella lunulata	M	124	8.59	80	Clymenella torquata	P	230	8.33	40
Nematoda	0	119	8.24	90	Ensis directus	M	127	4.60	70
Oxyurostylis smithi	0	89	6.16	100	Nematoda	0	108	3.91	80
Actiniaria	0	85	5.89	20	Batea catharinensis	A	103	3.73	50
Clymenella torquata	P	68	4.71	30	Crassinella martinicensis	M	77	2.79	60
Bhawania heteroseta	P	60	4.16	90	Mediomastus sp.	P	67	2.43	40
Cyathura burbancki	O	39	2.70	60	Pleuromeris tridentata	M	67	2.43	40
Travisia parva	P	37	2.56	50	Amastigos caperatus	P	61	2.21	40
Total of all other species		530	36.70		Total of all other species		880	31.87	
Post					Post				
Batea catharinensis	A	274	27.68	70	Prionospio dayi	P	108	24.38	60
Nematoda	0	93	9.39	90	Magelona sp.	P	34	7.67	70
Branchiostoma sp.	0	74	7.47	70	Eudevenopus honduranus	A	29	6.55	60
Bhawania heteroseta	P	58	5.86	80	Rhepoxynius epistomus	A	27	6.09	50
Crassinella lunulata	M	43	4.34	90	Armandia agilis	P	22	4.97	40
Sabellaria vulgaris vulgaris	P	31	3.13	20	Paraprionospio pinnata	P	21	4.74	40
Cyathura burbancki	O	27	2.73	60	Mediomastus sp.	P	17	3.84	60
Elasmopus levis	A	20	2.02	30	Copepoda	O	15	3.39	60
Pleuromeris tridentata	M	20	2.02	50	Spiophanes bombyx	P	11	2.48	40
Glycera americana	P	19	1.92	90	Mulinia lateralis	M	10	2.26	20
Total of all other species $\quad 331$ 33.43					Total of all other species		149	33.63	
6 mo Post					6 mo Post				
Nematoda	0	427	19.60	100	Spiophanes bombyx	P	945	44.37	90
Cupuladria doma	0	388	17.81	70	Mediomastus sp.	P	426	20.00	70
Batea catharinensis	A	344	15.79	50	Magelona sp.	P	124	5.82	90
Pleuromeris tridentata	M	141	6.47	70	Tellina agilis	M	110	5.16	90
Travisia parva	P	110	5.05	80	Nephtys picta	P	55	2.58	90
Crassinella martinicensis	M	63	2.89	80	Prionospio sp.	P	49	2.30	70
Bhawania heteroseta	P	53	2.43	80	Notomastus latericeus	P	39	1.83	80
Hemipodus roseus	P	52	2.39	90	Batea catharinensis	A	31	1.46	50
Crassinella lunulata	M	36	1.65	80	Phyllodoce arenae	P	29	1.36	70
Spiophanes bombyx	P	31	1.42	50	Protohaustorius deichmannae	A	29	1.36	20
Total of all other species 5344					Total of all other species		293	13.76	
12 mo Post					12 mo Post				
Cupuladria doma	0	1097	28.85	70	Nematoda	0	88	19.17	70
Nematoda	O	937	24.64	100	Ophelina acuminata	P	29	6.32	40
Veneridae	M	284	7.47	40	Magelona sp.	P	23	5.01	70
Pleuromeris tridentata	M	133	3.50	40	Eudevenopus honduranus	A	21	4.58	30
Caulleriella sp.	P	92	2.42	40	Tellinidae	M	21	4.58	20
Bhawania heteroseta	P	86	2.26	80	Tellina sp.	M	19	4.14	40
Crassinella martinicensis	M	86	2.26	40	Pelecypoda	M	15	3.27	30
Branchiostoma sp.	O	82	2.16	80	Prionospio cirrifera	P	15	3.27	20
Crassinella lunulata	M	73	1.92	60	Copepoda	O	14	3.05	60
Copepoda	0	65	1.71	80	Prionospio dayi	P	11	2.40	10
Total of all other species		868	22.82		Total of all other species		203	44.23	

dominant taxa present in both Pre and Post time frames were less widely distributed, occurring in only $40-70 \%$ of the samples collected.

The reference and borrow areas shared only two dominant taxa during the 6-mo (S. bombyx and Batea catharinensis) and 12-mo Post (Nematoda and Copepoda) time frames (Table 5). Five of the dominant taxa at the reference area pre-dredging (C. martinicensis, C. lunulata, B. heteroseta, Travisia parva, and the Nematoda) were also among the dominant taxa six months post-dredging, while at the borrow area, three of the dominant taxa pre-dredging (S. bombyx, B. catharinensis, and Mediomastus sp.) were among the dominant taxa six months post-dredging. Four of the dominant taxa at the reference area pre-dredging (C. martinicensis, C. lunulata, B. heteroseta, and the Nematoda) were also among the dominant taxa twelve months post-dredging, while at the borrow area only one of the dominant taxa pre-dredging (Nematoda) were among the dominant taxa twelve months post-dredging. In general, the reference area also hosted more persistent taxa than did the borrow area. Amongst the dominant taxa of the reference area, three (C. lunulata, B. heteroseta, and the Nematoda) were present during all four time frames, while at the borrow area, no species were amongst the dominants during all four time frames.

The mollusks Ensis directus (11\%), Crassinella martinicensis (9\%), and Crassinella lunulata (9\%) dominated the total faunal abundance at the reference area during the Pre time frame (Table 5; Appendix 5.5). Nematodes, representing 8% of the total faunal abundance, were also common at this area. Ensis directus disappeared completely from the reference area post-dredging, and several other taxa, which were common in the pre time frame, were substantially less abundant (Appendix 4).

Immediately post-dredging, the reference area contained mostly the amphipod, Batea catharinensis, which comprised 28% of the total abundance. By comparison, at the borrow area, four species accounted for more than 50% of the total faunal abundance during the Pre time frame (Table 5). The most abundant species were the spionid polychaete, Spiophanes bombyx, and a cumacean, Oxyurostylis smithi. During the Post time frame, polychaetes and amphipods dominated the faunal abundance, with the spionid polychaete, Prionospio dayi, accounting for almost 25% of the population. Spiophanes bombyx decreased in abundance by greater than 98% post-dredging. However, although S. bombyx was found in 70% of the borrow stations pre-dredging, 467 of the 544 individuals collected were found in one of the ten samples.

At the reference area, nematodes, the ectoproct Cupuladria doma and the amphipod B. catherinensis accounted for more than 50% of the total faunal abundance six months post-dredging (Table 5; Appendix 5.5). The mollusk, E. directus, which was the dominant species at the reference area pre-dredging, was only present in one of the six month post-dredging samples, and was completely absent from the area twelve months post-dredging (Table 5; Appendix 5.3, 5.4). Crassinella martinicensis and C. lunulata, which were also common in the Pre time frame, were substantially less abundant at the reference area twelve months post-dredging (Appendix 5). At the borrow area, three species of polychaete, S. bombyx, Mediomastus sp., and Magelona sp., accounted for more than 70% of the total faunal abundance six months post-dredging (Table 5; Appendix 5). The spionid polychaete, S. bombyx, which was the most abundant organism at the borrow area pre-dredging, and six months post-dredging, was much less abundant twelve months post-dredging. Examination of the number of individuals twelve
months post-dredging indicated a reduction in the total number of organisms present at the borrow area with a higher number of uncommon species.

Beach

Physical Characteristics

Nourishment succeeded in increasing beach width substantially between the Pre and Post time frames. The distance from the primary dune crest to the upper intertidal line (identified by the wrack line) increased from approximately 15 m Pre-nourishment to

Figure 10. Mean (+/-SE) distance from the dune crest to the wrack (high tine) line at nourished and reference A) areas and B) sites through time. Closed symbols-nourished stations/areas, open symbols-non-nourished stations/areas
almost 80 m Post-nourishment within the nourished area (Figure 10A), with two of the three monitored sites responding very similarly (Figure 10B). Beach width in the nourished area decreased to $50-55 \mathrm{~m}$ by the $3-\mathrm{mo}$ Post time frame and continued to decrease with the individual sites falling to between 20 m and 40 m width by the 12-mo Post time frame. The non-nourished reference sites of the beach fluctuated between 10 m and 25 m in width, but showed little evidence of longer-term change.

Some surficial sediment characteristics showed an apparent response to nourishment of the beach. In particular, sand phi size increased (became finer) in the reference areas but decreased (became courser) in the nourished areas (Figure 11A,E), a difference that was significant during the Post and 3 mo Post time frames (Table 6). By 6-mo Post, sand phi size was similar at reference and nourished areas (Figure 11A,E). Silt and clay content and calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ content changed similarly at the reference and nourished areas between the Pre and all post-nourishment time frames (Figure 11B,C,F,G; Table 6). Sediment total organic matter (TOM) was significantly different at reference and nourished areas between the Pre and Post time frames (Figure 11D,H; Table 6). Both reference and nourished areas decreased in TOM during this time, and the significant difference detected was likely due to the strikingly small amount of variance within reference and nourished areas during any given time frame. By the 3-mo Post time frame, TOM content was very similar between the nourished and reference areas despite having differed during the Pre time frame (Figure 11D,H).

Table 6: Results of repeated measures ANOVA comparing sediment characteristics in nourished and reference areas between Pre and post nourishment (Post, 3 mo Post, 6 mo Post, 12 mo Post) time frames. Shown are degrees of freedom, F values and p-values for the Area X Time interaction terms which, if significant, would indicate nourished and reference areas were changing differently through time.

Compared Time Frames	df	Phi		Silt/Clay		CaCO3		TOM	
		F	p	F	p	F	p	F	p
Pre vs Post	1,3	47.19	0.006	0.59	0.498	1.77	0.275	38.14	0.009
Pre vs 3 mo Post	1,4	32.59	0.005	0.19	0.689	2.26	0.207	4.06	0.114
Pre vs 6 mo Post	1,4	0.14	0.726	1.12	0.333	0.20	0.679	1.66	0.267
Pre vs 12 mo Post	1,4	1.33	0.313	1.40	0.302	0.10	0.768	4.69	0.096

Figure 11. Mean (+/-SE) beach sediment characteristics of the lower intertidal zone in nourished and reference $A-D$) areas and $E-H$) sites through time. Closed symbolsnourished sites/areas, open symbols-non-nourished sites/areas

Ghost Crab (Ocypode quadrata) Populations

Of the four measures of ghost crab density, only areal density (number of crab burrows per square meter) showed a significantly different temporal pattern in the nourished area as compared to the reference area (Table 7; Figure 12B,F). The Area X Time Frame interaction term was significant during the Post time frame, weakened but remained significant in the 3-mo Post time frame, and further weakened and became nonsignificant in the 6-mo Post and 12-mo Post time frames (Table 7). The areal densities of ghost crabs increased during the Post and 3-mo Post time frames in the reference area but remained relatively stable in the nourished area (Fig 12B). Sites within reference and nourished areas were significantly different through time during the 3-mo Post, 6-mo Post, and 12-mo Post time frames (Table 7; significant Site X Time Frame interactions). The linear densities, dune densities (within 10 m of the dune crest) and tideline densities (within 5 m of the wrack line) did not show evidence of changing significantly in the nourished area relative to the reference area (Table 7). As with areal density, changes in linear density in the nourished area tracked those observed in the reference area, with a peak density at 3-mo Post, a decline 6-mo Post, and a second peak 12-mo Post (Figure 12A,E). Dune ghost crab densities varied substantially, with peak densities occurring on a site- specific basis in the reference area with no such fluctuations (most notably the peak at 3 mo Post) occurring in the nourished area (Fig 12C,G).

With the exception of tideline densities, ghost crab densities were significantly different in the reference and control areas (Table 7; Source $=$ Area). The reference area generally started with greater ghost crab densities during the Pre time frame and maintained that difference through the 12-mo Post time frame (Figure 12A-D). The

Table 7: Results of repeated measures ANOVA comparing burrowing macrofauna densities in nourished and reference areas between Pre and post nourishment (Post, 3 mo Post, 6 mo Post, 12 mo Post) time frames.

Source	Pre vs Post			Pre vs 3 mo Post			Pre vs 6 mo Post			Pre vs 12 mo Post		
	df	F	p									
Ocypode quadrata												
Linear Density												
Area	1	12.51	0.038	1	10.43	0.032	1	19.16	0.012	1	20.63	0.010
Site(Area)	3	0.92	0.528	4	0.61	0.681	4	0.86	0.557	4	0.37	0.820
Time Frame	1	0.18	0.018	1	22.35	0.009	1	0.13	0.736	1	19.08	0.012
Area *Time Frame	1	0.58	0.575	1	1.22	0.332	1	4.43	0.103	1	1.33	0.313
Site*Time Frame	3	0.22	0.219	4	5.40	0.001	4	2.81	0.036	4	5.59	0.001
Error	40			48			48			48		
Ocypode quadrata												
Areal Density												
Area	1	40.64	0.008	1	64.12	0.001	1	13.09	0.022	1	14.43	0.019
Site(Area)	3	1.40	0.393	4	0.38	0.813	4	1.24	0.419	4	0.65	0.655
Time Frame	1	4.17	0.134	1	15.01	0.018	1	0.04	0.847	1	6.04	0.070
Area *Time Frame	1	15.96	0.029	1	8.63	0.042	1	4.76	0.095	1	2.63	0.180
Site*Time Frame	3	1.75	0.172	4	4.52	0.004	4	4.69	0.003	4	8.73	<0.001
Error	40			48			48			48		
Ocypode quadrata												
Dune Density												
Area	1	38.28	0.009	1	18.02	0.013	1	13.37	0.022	1	15.29	0.017
Site(Area)	3	0.37	0.781	4	1.92	0.271	4	0.79	0.586	4	0.69	0.635
Time Frame	1	13.51	0.036	1	17.04	0.014	1	1.04	0.365	1	3.09	0.154
Area *Time Frame	1	5.56	0.101	1	6.60	0.062	1	3.42	0.138	1	4.48	0.102
Site*Time Frame	3	1.54	0.220	4	1.75	0.154	4	3.87	0.009	4	7.04	<0.001
Error	40			48			48			48		

Table 7 cont.

Ocypode quadrata Tideline Density												
Area	1	2.24	0.231	1	7.91	0.048	1	3.64	0.129	1	2.93	0.162
Site(Area)	3	8.87	0.053	4	0.29	0.868	4	2.39	0.210	4	0.48	0.751
Time Frame	1	0.72	0.459	1	6.61	0.062	1	1.41	0.301	1	10.21	0.003
Area *Time Frame	1	0.93	0.405	1	0.54	0.503	1	1.57	0.278	1	0.13	0.741
Site*Time Frame	3	1.29	0.290	4	6.81	<0.001	4	2.21	0.082	4	7.59	<0.001
Error	40			48			48			48		
Callichirus major												
Linear Density												
Area	1	12.51	0.038	1	10.43	0.032	1	19.16	0.012	I	20.63	0.010
Site(Area)	3	0.92	0.528	4	0.61	0.681	4	0.86	0.557	4	0.37	0.820
Time Frame	1	0.18	0.018	1	22.35	0.009	1	0.13	0.736	1	19.08	0.012
Area *Time Frame	1	0.58	0.575	1	1.22	0.332	1	4.43	0.103	1	1.33	0.313
Site*Time Frame	3	0.22	0.219	4	5.40	0.001	4	2.81	0.036	4	5.59	0.001
Error	40			48			48			48		

Figure 12. Mean (+/-SE) ghost crab, Ocypode quadrata, densities on nourished and reference $A-D$) areas and $E-H$) sites through time. Dune crab densities are those within 10 m of the primary dune crest, and tide line crab densities are those within $5 m$ of the high tide line. Closed symbols-nourished stations/areas, open symbols-non-nourished stations/areas
individual sites reflected this general pattern (Figure 12E-H). In most cases, the sites within an area changed in a significantly different manner through time, with most of the differences occurring during later time frames (Table 7).

Dune ghost crab densities tended to show a negative relationship with beach width during all but Post time frames (Figure 13A; Table 8). Because this relationship likely reflects the widening of the beach in areas where ghost crab densities were already lower, the change in dune ghost crab densities was examined as a function of change in beach width during each time frame. Although none of the regression lines describing

Figure 13. Relationships between A) dune crab densities and beach width, B) change in dune crab densities and change in beach width prior to and following dredging, C) tide line crab densities and beach width, D) change in tide line crab densities and change in beach width prior to and following dredging.
these relationships were significant ($\mathrm{p}>0.05$), they all possessed negative slopes, indicating that densities tended to decrease more over pre-nourishment conditions as beach width increased (Figure 13B; Table 8). By contrast, tideline densities showed no consistent relationship with beach width (Figure 13C), and changes in tideline ghost crab densities tended to have positive (and non-significant) relationships with changes in beach width (Figure 13D; Table 8).

Table 8. Slope, coefficient of variation $\left(R^{2}\right)$, and p-value for regression lines describing the relationship between change in beach width and the change in ghost crab dune and tideline densities during each of four sampling time frames.

Change Between	Dune Density				Tideline Density		
Time Frames	Slope	$\mathbf{R}^{\mathbf{2}}$	\mathbf{p}		Slope	$\mathbf{R}^{\mathbf{2}}$	\mathbf{p}
Post - Pre	-	0.00	0.620		+	0.19	0.256
3 mo Post - Pre	-	0.43	0.095		+	0.05	0.320
6 mo Post - Pre	-	0.09	0.287		+	0.00	0.980
12 mo Post - Pre	-	0.00	0.615		-	0.00	0.991

Ghost Shrimp (Callichirus major) Populations

Observations suggest that the ghost shrimp, Callichirus major, occurred on Folly Beach primarily in the lowest portions of the intertidal zone and became increasingly abundant in the shallow subtidal. As a result, the surveys here captured only the uppermost edge of the distribution of this species. Ghost shrimp linear densities were not significantly different at the nourished area than at the reference area (Table 7); however, there was a clear increase in linear densities of ghost shrimp in the nourished area during the Post and 3-mo Post time frames that was not reflected in the reference area (Figure 14). In later time frames, linear densities decreased sharply in the nourished area and began increasing in some reference sites.

Figure 14. Mean (+/-SE) ghost shrimp, Callichirus major, densities on nourished and reference A) areas and B) sites through time. Closed symbols-nourished stations/areas, open symbols-non-nourished stations/areas

DISCUSSION

Borrow Area

Dredging at the borrow area caused marked changes in both the sediment characteristics and benthic biological communities of the area. Short-term changes were expected due to the complete removal of sediment to depths up to 3.5 m below the existing seafloor and the resulting exposure of deeper sediment layers possessing different characteristics. The preferred post-dredging scenario is one of rapid recovery to pre-dredging conditions, characterized by refilling of the borrow pit with sands similar to those dredged and subsequent colonization by communities typical of those sediments. However, in the borrow area, neither the sediment characteristics nor the biological community recovered to pre-dredge conditions within the first 12-months following dredging.

The seafloor within the borrow pit shifted toward finer grained sediments postdredging. Silt/clay content increased, CaCO_{3} (typically shell material and carbonate rock rubble) decreased and sand phi size increased (became finer) following dredging and showed no evidence of recovering twelve months later. Refilling of borrow pits with
finer sediments has been documented in other monitoring studies. In the dredged area used to nourish Folly Beach in 1993, silt and clay increased from 3% to 10% and sand phi size increased following dredging (Van Dolah et al. 1994). In the Joiner Banks borrow area used to nourish Hilton Head Island in 1990, sand content declined 31\%, and sand phi size and silt and clay content increased following dredging (Van Dolah et al. 1992; Jutte and Van Dolah 2000). In all of these studies, fine sediments remained elevated in the borrow areas for at least one year following dredging.

Some studies have documented recovery of normal sediments in borrow pits, sometimes within several months (Bowan and Marsh 1988; Jutte and Van Dolah 2000; Jutte et al. 2001b). Jutte et al. (2001b), comparing the relative performance of two borrow pits used to renourish Myrtle Beach, SC, USA, observed that a pit located centrally along the coastline and created with a hydraulic pipeline dredge had persistent modified sediment characteristics for more than two years post-dredging, but that a pit located at the southern end of the beach and created using a hopper dredge had no change in sediment characteristics post-dredging. Combined with previous studies (Jutte et al. 1999b, 2002), this indicated that borrow pit depth played an important role in determining whether pits refilled with beach-compatible material. The two borrow areas examined by Jutte et al. (2001a,b) also refilled at very different rates. The centrally located pit with persistent modified sediment characteristics was refilling slowly with rates estimated at $0-16 \%$ after two years, and the southern pit with unmodified sediment characteristics was refilling rapidly with rates estimated at 47-100\% after two years. Van Dolah et al. (1998) suggested that, in South Carolina, borrow pits located in depositional shoals at the southern ends of barrier islands would represent more sustainable locations
than those located more centrally or at the northern ends of barrier islands due to the southerly direction of the dominant alongshore currents. Considering these past findings, the refilling of the Folly Beach borrow pit with fine materials is consistent with it having been dredged up to 3.0 m deep using a hydraulic dredge and its location at the north end of the island near a source of terrigenous material (Charleston Harbor inlet).

Van Dolah et al. (1998) found that most borrow pits created as a result of beach nourishment in South Carolina required between 5.5 and 11.8 years to completely refill, and that several years following dredging, surficial sediments consisted primarily of clean sands. However, two of the borrow pits examined in that study had first filled with finegrained silts and clays before being covered by beach-compatible sand (Van Dolah et al. 1994; Jutte and Van Dolah 2000). The resulting lens of mud beneath the surficial sand makes those areas unsuitable for future nourishment projects, requiring dredging in new, previously undisturbed areas. Like those two borrow areas, the Folly Beach borrow area is refilling with fine material, suggesting this area will be unsuitable for future nourishment projects on Folly Beach. This area should be monitored closely to determine whether surficial conditions return to the pre-dredging state and whether the fines now being deposited within the pit persist beneath the surficial sediments.

The biological community in the borrow area changed substantially following dredging and failed to recover over the subsequent 12 months. Although borrow and reference area communities were very similar during the Pre time frame, they sharply diverged during all post-dredging time frames. These changes were apparent from the broadest levels of community organization, such as measures of similarity and biodiversity, to fine scales of species abundances. Because dredging necessarily removes
the entire benthic community, the change in the borrow area was expected in the Post time frame; however, the lack of recovery over the following 12 months suggests that the borrow area had changed to such an extent that it was no longer capable of supporting a typical benthic community.

Overall community structure shifted substantially at the borrow area postdredging, independent of any seasonal cycles. As compared to the reference area, total faunal abundance, species richness, and species diversity at the borrow area increased six months post-dredging, then density and richness declined significantly twelve months post-dredging, while diversity returned to pre-dredging levels. The increase in evenness likely reflects the loss of rare species from the borrow area as suggested by the decrease in species richness. The apparent recovery of diversity is due to the opposing effects of increasing species evenness and decreasing species richness within the borrow area. In this case, diversity provided a poor metric of community response and recovery as it hid the changes occurring within the community.

The severe decrease in total faunal density at the borrow area relative to the reference area through twelve months post-dredging was primarily driven by decreases in mollusks, polychaetes, and organisms in the "other taxa" category. Major shifts in abundances of higher taxonomic groups post-dredging have been documented in other studies. For example, in borrow pits associated with the nourishment of Myrtle Beach, SC, Jutte et al. (1999b, 2001a) found mollusks and "other taxa" failed to recover 12-18 months post-dredging at one borrow area, and that most higher taxonomic groups required approximately 19-28 months to recover at a second borrow area. The trend of declining mollusk abundances observed here and in other studies (Jutte et al. 1999b,

Blake et al.1996) following dredging may be attributable to seasonal reproductive patterns and limited recruitment in this taxon (Simon and Dauer, 1977).

Dredging also appeared to have affected community composition at the species level. The dissimilarities of the borrow area communities during the post-dredging time frames do not appear to be a temporal cycle because both the reference and borrow area shared common species between the Pre and Post time frames. Several studies in South Carolina have addressed shifts in abundance of particular species in response to dredging (Jutte et al. 1999a, 2001a, 2001b; Van Dolah et al. 1994). Some species, such as the polychaetes Spiophanes bombyx and Prionospio dayi, and the mollusks Ensis directus and Crassinella martinicensis, commonly occur in South Carolina and exhibit changes in abundances following dredging activities. Mollusk recolonize slowly after dredging (Jutte et al. 1999a; Simon and Dauer, 1977), while certain polychaetes, such as the spionids Prionospio dayi (Table 4) and P. cristata tend to increase in abundance quickly at borrow sites post-dredging (Jutte et al. 2001a,b). Changes in Ensis directus abundances likely reflect sporadic seasonal trends (Jutte et al. 1999a, 2001b), but other species may be responding to dredging-related changes in sediment characteristics, food sources, or the overall physical disturbance. The shifts in species composition seen in the Folly Beach borrow pit monitored here are consistent with previously-documented slow mollusk recovery and dominance by certain polychaetes (such as P. dayi) in severely disturbed benthic areas.

The difference in dominant species found at reference and borrow areas may be in part linked to variation in sediment characteristics even during the Pre time frame. Low variance in sediment characteristics at the reference area, relative to the borrow area,
suggests the reference area was a more homogenous environment. The CCA plot of individual station-communities suggests that, pre-dredging, many of the borrow area stations were similar in species and environmental characteristics to the reference area stations, but with a few borrow area stations having communities consistent with finer grained sediments. Post-dredging, all borrow area station-communities shifted towards those associated with finer sediments.

Response and recovery of the biological community is likely closely related to the depth below grade and location of the borrow pit. The borrow areas used to nourish Hilton Head in 1990 and 1999 and the borrow area used to nourish Folly Beach in 1993 were dredged to $3+m$ below grade, and all were located either adjacent to or within a tidal inlet. These areas accumulated significant fine material, suffered major changes in benthic community structure, and failed to recover within at least one year (Van Dolah et al. 1992; Van Dolah et al. 1994; Jutte and Van Dolah 2000). Other studies have found that impacts on faunal diversity did not persist for a significant period of time following dredging, and recovery of communities to pre-dredging conditions have been documented within 6-9 months after dredging occurred (Jutte et al. 1999b, 2001; Van Dolah et al. 1994). Two borrow areas examined by Jutte et al. (1999b, 2001a,b) exhibited rapid recovery of faunal abundances to pre-dredge conditions. Both of these areas were dredged to only about one meter below grade using a hopper dredge. This dredging method creats shallower depressions in the seafloor that provide less opportunity for the settling of fines and produce long furrows separated by undisturbed bottom ridges (Taylor 1990). These ridges can provide a local source of fauna allowing the rapid recolonization of the adjacent furrows by similar fauna (Jutte et al. 2001b).

The analyses performed here suggest that higher order taxonomic groups provide limited utility in detecting the impact of dredging on benthic communities. Higher order taxonomic groups responded to dredging, but not in a consistent and strong manner. Organisms in the "other taxa" group responded significantly to dredging at the borrow pit post-dredging, while amphipods, mollusks, polychaetes, and other crustaceans showed evidence of changing differently but not significantly at borrow and reference areas during the pre and post time frame. First, the lack of change in most higher taxonomic groups masks the underlying changes occurring in individual species both seasonally and in apparent response to dredging. Second, variability in abundances of higher taxonomic groups may have reduced the power of statistical tests, making it difficult to detect differences. This suggests that previously-documented higher order taxonomic group recovery in some studies (Jutte et al. 1999b, 2001a,b) should be interpreted with care as the species composition of those communities may still be very different. This also suggests that larger sample sizes and identifications to lower taxonomic levels (at least lower than the higher taxonomic groups examined here) are necessary to fully document impacts from dredging. However, both of these needs can significantly increase cost, so for impact assessments to be both economically feasible and ecologically sound there is a need to balance higher taxonomic resolution and the ability to detect impacts. Studies in other systems have shown that family and genus level identifications can provide a good representation of species at a fraction of the cost of identifying samples to the species level (James et al. 1995, Balmford et al. 1996, Sanchez et al. 2006). If this is also true in subtidal sand flats used for borrow areas, statistical power could be improved by identifying organisms at a coarser taxonomic resolution in more samples without a
substantial increase in cost. This should be further investigated as a potential costsavings tool.

Beach

The width of the subaerial beach within the monitored nourishment area, as measured from the primary dune crest to the high tide line, increased four-fold following the placement of fill material on the shoreface. Following placement, beach width decreased sharply within just three months and continued decreasing such that by twelve months post-nourishment, beach width was $25-50 \%$ of the immediate post-construction width. This was likely due at least in part to the expected equilibration of the beach profile as sediments were carried into the intertidal and subtidal zones. However, strong storms during the winter of 2006 likely also played a role in the rapid reduction in beach width, leading to a second emergency nourishment of this beach in winter/spring 2007.

In general, sediment characteristics did not change substantially on the nourished beach and the changes that did occur (sand phi size and TOM) were no longer apparent within 6 months. Recovery of beach sediment characteristics following nourishment has historically been rapid in South Carolina, occurring within one to six months (Van Dolah, et al. 1992; Van Dolah et al. 1994; Jutte et al. 1999b). In these past studies, recovery of benthic invertebrate communities (the base of the consumer food web on beaches) was likewise rapid and sometimes even occurred faster than the full recovery of native sediment characteristics. However, in some cases, changes in sediment characteristics persisted. For example, Jutte et al. (1999b) found that materials dredged from a shallow lens of sand overlying hardbottom and placed on Myrtle Beach contained more carbonate
rubble and coarser sands than the native beach sediments. These conditions persisted for at least six months post-dredging.

Nourishment did not have a clear and consistent impact on ghost crab abundances on Folly Beach. Areal ghost crab density (individuals per m^{2}) decreased in the nourished area while it increased in the reference area post-nourishment. However, this response likely reflects a substantial increase in beach width following nourishment rather than a decline in ghost crab abundances. In fact, linear density (individuals per meter of beach) increased in both areas up to at least three months post nourishment, indicating that ghost crab population sizes at any given point along the shoreface were increasing independent of any effect of nourishment. The finding here of minimal impact on ghost crab linear densities is consistent with other studies on this species (Peterson et al. 2006; Dixon 2007).

Ghost crab densities within two habitats, dunes and near the tide line, also showed no significant response to nourishment activities. While not significant, there was some evidence of dune ghost crab densities decreasing with increased beach width within each time period. Ghost crabs forage primarily in the intertidal zone where they prey upon infaunal invertebrates such as surf clams (Donax spp) and mole crabs (Emerita spp) (Wolcott 1978) and in some cases deposit feed (Robertson and Pfeiffer 1982). Additionally, ovigerous females incubate their eggs within or near their burrows but must release them into the water (Haley 1972, 1973; Negreiros-Fransozo et al. 2002). Thus, although ghost crabs can create borrows within the supralittoral zone and well into the dune system, they ultimately rely upon access to the intertidal zone for feeding and reproduction. Greater distances between the primary dunes and the high tide line caused
by the addition of beach fill may have acted to fragment the ghost crab habitat by reducing access to water and forage and increasing the risk of predator exposure.

Ghost crab densities near the high tide line behaved almost identically in the nourished and reference areas. While densities decreased immediately following nourishment, likely due to burial of the existing individuals living near the tide line, densities increased markedly 3 months later at all but one site. Ocypode spp. tend to show size related habitat differentiation with smaller individuals occupying habitats lower on the beach and larger individuals occupying areas higher on the beach (Strachan et al.1999; Turra et al. 2005). Dixon (2007) found similar size-specific patterns in the ghost crab populations of Folly Beach with juveniles occurring lower on the beach and adults nearer the dunes. That tide line population densities did not show any long-term negative response to nourishment or relationship with increasing beach width is consistent with this habitat being maintained by an influx of new juvenile recruits. Interestingly, this input of juveniles into the nourished areas did not result in the colonization of new habitat created by the addition of beach fill. The lack of colonization is suggested by stagnant dune ghost crab densities in nourished areas and the lack of a substantial increase in linear densities in the nourished area relative to the reference area.

Reference sites always hosted more crabs than nourished sites even prior to nourishment activities. Within the nourished area, houses were located directly behind the primary dune, while the reference area at the far end of Folly Beach was adjacent to undeveloped property. As a result, the nourished area likely sees more pedestrian traffic than the reference area. The numbers of Ocypode spp. burrows have been shown to act as a strong indicator of anthropogenic impact on beaches (Barros 2001). More
specifically, Neves and Bemvenuti (2006) showed that ghost crab densities were lower on beaches with greater pedestrian and vehicular traffic. In addition to direct impact by trampling of habitat, the difference between nourished and reference areas may reflect the availability of habitat behind the primary dune crest. In the reference area, crab populations landward of the primary dune crest may be acting as a refuge population from which the primary dunes and upper beach may be colonized when smaller scale impacts do occur. However, very little is known about the size or composition of these landward hind-dune populations.

Overall, this pre-existing difference between nourished and reference population densities may have confounded our ability to detect impacts in this study. First, this clearly illustrates the importance of ensuring that beach nourishment monitoring studies follow the Before-After Control-Impact (BACI) design. In a study of nourishment impacts at Bogue Banks, North Carolina, Peterson et al. (2000) reported ghost crab densities on a nourished beach $86-99 \%$ lower than on nearby reference beaches. This suggested a very strong reaction to nourishment, but because the authors did not evaluate ghost crab abundances in the same areas prior to nourishment, it is not known whether the two areas supported different abundances prior to nourishment. If the prenourishment data were unavailable in the current study, we might have concluded that nourishment had a strong and persistent impact on the ghost crab populations. Second, because the nourished and reference areas began with different densities, densitydependent population growth could result in population sizes changing differently through time even in the absence of nourishment activities. Our current understanding of population dynamics in this species is insufficient to determine whether the changes
observed here were due to nourishment impacts or to natural population growth and decline.

Ghost shrimp densities showed no significant relationship to nourishment activities. A sharp but non-significant increase in ghost shrimp densities immediately following and 3 months following nourishment suggest that beach filling may have increased the value of the lower intertidal zone for this species, perhaps by reducing slope and increasing the total amount of habitat available within the swash zone. Bilodeau and Bourgeois (2004) observed that a related ghost shrimp, Callichirus islagrande, was generally absent following the nourishment of two beaches in Louisiana, USA, while the shrimp was present at those same beaches prior to nourishment. This pattern was not apparent on Folly Beach.

In general, intertidal counts of ghost shrimp burrows were highly dependent upon the stage of the tide at the time the surveys were performed. Burrows were increasingly abundant closer to the water's edge during low tide and were most dense within the shallow subtidal zone where consistent counts were extremely difficult. Small differences in tidal fluctuations between sampling time frames, even between the two days necessary to perform the surveys, could greatly impact burrow counts. As a result, intertidal burrow counts likely do not provide a consistent and accurate measure of the abundance of this species.

Site-to-site variation was significant and substantial in all biological responses. This variation likely reduced the power of the statistical analyses performed and illustrates the importance of developing well-replicated study designs that represent a broad spatial scale. By sampling multiple sites within the nourished and reference areas,
the current monitoring study reduced the chances of drawing erroneous conclusions regarding differences between those areas. Because nourishment proceeded from north to south along Folly Island, the concentration of study sites at the north end of the beach reduced the chances of error introduced by differences in the date on which the impact occurred. However, that same sampling scheme also limited the generalities that could be drawn from the study. Hurlbert (1984) emphasized the importance of properly replicated studies that avoid pseudoreplication (re-sampling of the same experimental units) and of interspersion of treatment effects to avoid spatial autocorrelation. Peterson and Bishop (2005) identified pseudoreplication and interspersion, as well as difficulties with finding truly independent areas to monitor (nourishment of one area of beach may in fact affect adjacent non-nourished beach areas) as major design problems with beach nourishment studies. As with all large scale monitoring programs, these study design issues were balanced against other sources of error. The Folly Beach nourishment project added beach fill to a single continuous band, thus the opportunity to intersperse reference and nourished areas was very limited. While the reference and nourished areas were pseudoreplicated in the strictest sense, there was a need to reduce temporal effects of impact occurring along the beach at different times by localizing sampling at one end of the island. The conditions at each monitoring site were likely dependent, to some extent, upon the conditions at adjacent monitoring sites, but the sampling sites within each area were spread out as much as possible to improve independence. In most projects of this scale, completely removing the effects of pseudoreplication, lack of interspersion, and lack of independence of reference and nourished areas is unlikely within any single study,
but the broader interpretation of nourishment impacts on beach systems is possible if studies continue on future nourishment projects.

Several potentially important responses of beach systems to nourishment remain under-investigated including but not limited to local and regional population dynamics, food web structure, energy transfer and storage, nutrient cycling, and ecosystem connectivity. As an example, Dixon (2007) performed a more detailed analysis of ghost crab population size structure in nourished and reference areas of Folly Beach and showed very clear impacts on local population structure. Specifically, entire cohorts were eliminated from populations experiencing beach fill, an impact likely to affect future reproductive output of the local populations. Peterson and Bishop (2005) argued that the longer-term and broader-scale impacts of these kinds of changes should be addressed with a focused effort that includes a modeling component. Future studies should address these unresolved issues and involve experimental components aimed at elucidating driving mechanisms. Only by teasing out the multiple simultaneous mechanisms driving the changes observed in response to nourishment can we begin to make sound management decisions that improve project design parameters and minimize ecological impacts.

CONCLUSIONS

Dredging resulted in significant and persistent changes in sediment characteristics and biological communities in the borrow area. Sediment composition shifted toward fines and showed little if any evidence of recovery even twelve months post-dredging. These results were consistent with findings in other dredge pits deeper than 1.0 m and located close to a sources of terrigenous sediments such as tidal rivers. The accumulation of fines is likely to make this area unsuitable for future renourishment projects on Folly Beach. Characteristics of the benthic invertebrate community, from broad community indices to species composition, changed in response to dredging and continued to diverge from previous conditions even one year after the cessation of dredging activity. The failure of the community to recover is likely linked to the lack of recovery of native sediment characteristics.

Nourishment had little effect on surficial sediment characteristics and burrowing macroinvertebrates on the beach. Beach width increased post-nourishment as expected, but within 6-12 months had decreased to $25-50 \%$ of its post-nourishment width. Overall ghost crab population size did not respond substantially, but the density of ghost crabs near the primary dune showed evidence of being negatively impacted by increasing beach width. Although the nourishment did not affect the density of presumably recently recruited ghost crabs near the high tide line, these individuals did not appear to colonize new beach habitat created by nourishment. Reference and nourished areas on the beach had different ghost crab densities even prior to nourishment occurring, likely reflecting differences in human pedestrian traffic in the two areas. This difference may have confounded our ability to detect the effects of nourishment. Ghost shrimp densities
increased at the nourishment area post-nourishment, perhaps due to reduced beach slope and increased habitat availability in the swash zone. However, determination of ghost shrimp densities within the intertidal zone was highly tide dependent, suggesting this species is not a reliable indicator of beach nourishment impacts.

RECOMMENDATIONS

1) Minimize the depth of borrow pits, particularly near sources of terrigenous sediment such as tidal rivers and inlets.

Consistent with several other previous studies in which borrow pits were greater than 1.0 m deep and located on the north end of a barrier island near a tidal inlet, silt and clay readily settled into the borrow pit used in this nourishment project. As this pit continues to fill, the underlying lens of fine material deposited within it will prevent this area from being used in future projects. Shallower pits in these areas may prevent the accumulation of fine sediments, and deeper pits should be restricted to those areas in which beach-compatible sand is actively depositing. 2) Perform hydrologic and sediment transport modeling studies prior to borrow pit dredging to ensure sustainable use of borrow areas.

Detailed models could be used to determine what borrow pit depth would minimize the accumulation of fine sediments at various distances from sources of terrigenous sediment. For example, along Folly Beach, shallower pits may be necessary closer to the Charleston Harbor while deeper pits may be possible further south. The goal should be to dredge only to the depth where beach compatible sands re-accumulate for later nourishment projects.
3) Maintain the careful matching of borrow sediments to the beach upon which they will be placed.

This project very effectively matched sediment characteristics within the monitored section of beach. Such close matching has allowed South Carolina's beach ecosystems to recover rapidly from nourishment activities. This practice
should be maintained in all future nourishment projects in the State with proper monitoring of dredging operations to ensure incompatible materials are placed on the beach.
4) Require that physical and biological monitoring activities of future nourishment projects meet minimal sampling design criteria.

A Before-After Control-Impact design is critical to controlling for both spatial and temporal variability. Preferably, both impact and reference sites should be monitored at multiple time points both prior to and following dredging or nourishment. As a minimum, pre-impact monitoring should occur immediately prior to the impact and preferably include one or more monitoring events scheduled at six month intervals pre-impact. The post-impact monitoring should occur immediately following the impact as well as at six and twleve months postimpact. Borrow area monitoring should also include a 24 -month post-impact sampling event. When possible, multiple interspersed reference and impact areas should be monitored as well.

LITERATURE CITED

Balmford, A., A.H.M. Jayasuriya, M.J.B. Green. 1996. Proceeding of the Royal Society of London B 263:1571-1573.

Barros, F. 2001. Ghost crabs as tools for rapid assessment of human impacts on exposed sandy beaches. Biological Conservation 97:399-404.

Bilodeau, A.L., and R.P. Bourgeois. 2004. Impact of beach restoration on the deepburrowing ghost shrimp, Callichirus islagrande. Journal of Coastal Research 20: 931-936.

Blake, N.J., L.J. Doyle, and J.J. Culter. 1996. Impacts and direct effects of sand dredging for beach nourishment on the benthic organisms and geology of the West Florida Shelf. Final Report. OCS Report MMS 95-0005. U.S. Department of the Interior, Minerals Management Service, Office of International Activities and Marine Minerals, Herndon, VA. 109pp.

Bowan, P.R., and G.A. Marsh. 1988. Benthic faunal colonization of an offshore borrow pit in southeastern Florida. Miscellaneous Paper D_88-5, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS. 43pp.

Brown, A.C. and A. McLachlan. 1990. Ecology of sandy shores. Elsevier Science Publishing Company, Inc., New York, NY. 328 pp.

Defeo, O., and A. McLachlan. 2005. Patterns, processes and regulatory mechanisms in sand beach macrofauna: a multi-scale analysis. Marine Ecology Progress Series 295: 1-20.

Dixon, C.E. 2007. The effects of summer beach nourishment to the Atlantic ghost crab
populations on Folly Beach, SC. Masters Thesis, The Graduate School of the College of Charleston. Charleston, SC.

Folk, R.L. 1980. Petrology of sedimentary rocks. Hemphill Publishing Company, Austin, Texas. 185 pp.

Grain, D.A., A.B. Bolten, and K.A. Bjorndal. 1995. Effects of beach nourishment on sea turtles: review and research initiatives. Restoration Ecology 3:95-104.

Haley, S.R. 1972. Reproductive cycling in the ghost crab Ocypode quadrata (Fabr.) (Brachyura, Ocypodidae). Crustaceana 23:1-11.

Haley, S.R. 1973. On the use of morphologic data as a guide to reproductive maturity in the ghost crab Ocypode ceratophthalmus (Pallas) (Brachyura, Ocypodidae). Pacific Science 27:350-362.

James, R.L., M.P. Lincoln Smith, P.G. Fairweather. 1995. Sieve mesh size and taxonomic resolution to describe natural spatioal variation of marine macrofauna. Marine Ecology Progress Series 118:187-198.

Jutte, P.C., R.F. Van Dolah, and M.V. Levisen. 1999a. An environmental monitoring study of the Myrtle Beach renourishment project: intertidal benthic community assessment, Phase II—Myrtle Beach. Final Report, prepared by the South Carolina Marine Resources Research Institute, South Carolina Marine Resources Division, Charleston, SC for the US Army Corps of Engineers, Charleston District. 38pp.

Jutte, P.C., R.F. Van Dolah, and M.V Levisen. 1999b. An environmental monitoring study of the Myrtle Beach renourishment project: physical and biological assessment of offshore sand borrow site, Phase I-Cherry Grove borrow area.

Final Report, prepared by the South Carolina Marine Resources Research Institute, South Carolina Marine Resources Division, Charleston, SC for the US Army Corps of Engineers, Charleston District. 79pp.

Jutte, P.C. and R.F. Van Dolah. 2000. An assessment of benthic infaunal assemblages and sediments in the Joiner Bank and Gaskin Banks borrow areas for the Hilton Head beach renourishment project. Final Report, Marine Resources Research Institute, South Carolina Department of Natural Resources, submitted to Olsen Associates, Inc. and the Town of Hilton Head Island. $34 \mathrm{pp}+$ appendices.

Jutte, P.C., R.F. Van Dolah, G.Y. Ojeda, and P.T. Gayes. 2001a. An environmental monitoring study of the Myrtle Beach renourishment project: physical and biological assessment of the offshore sand borrow site, Phase II-Cane South borrow area. Final Report, prepared by the South Carolina Marine Resources Research Institute, South Carolina Marine Resources Division, Charleston, SC for the US Army Corps of Engineers, Charleston District. 70pp.

Jutte, P.C., L.E. Zimmerman, R.F. Van Dolah, G.Y. Ojeda, and P.T. Gayes. 2001b. An environmental monitoring study of the Myrtle Beach renourishment project: physical and biological assessment of offshore sand borrow sites, Phase IIISurfside borrow area. Final Report, prepared by the South Carolina Marine Resources Research Institute, South Carolina Marine Resources Division, Charleston, SC for the US Army Corps of Engineers, Charleston District. 80pp.

Jutte, P.C., R.F. Van Dolah, and P.T. Gayes. 2002. Recovery of benthic communities following offshore dredging, Myrtle Beach, South Carolina. Shore and Beach 70: 25-30.

McLachlan, A. 1996. Physical factors in benthic ecology: effects of changing sand particle size on beach fauna. Marine Ecology Progress Series 131: 205-217. Negreiros-Fransozo, M.L., A. Fransozo, and G. Bertini. 2002. Reproductive cycle and recruitment period of Ocypode quadrata (Decapoda, Ocypodidae) at a sandy beach in southeastern Brazil. Journal of Crustacean Biology 22:157-161.

Nelson, WG. 1993. Beach restoration in the southeastern US: Environmental effects and biological monitoring. Ocean and Coastal Management 19:157-182.

Neves, F.M. and C.E. Bemvenuti. 2006. The ghost crab Ocypode quadrata (Fabricus, 1787) as a potential indicator of anthropogenic impact along the Rio Grande do Sul coast, Brazil. Biological Conservation 133:431-435.

Nordstrom, KF. 2005. Beach nourishment and coastal habitats: research needs to improve compatibility. Restoration Ecology 13:215-222.

NRC (National Research Council). 1995. Beach Nourishment and Protection. National Academy Press, Washington DC. 334pp.

Pequegnat, W.E., L/H. Pequegnat, B.M. James, E.A. Kennedy. R.R. Fay, and A.D. Fredericks. 1981. Procedural guide for designation surveys of ocean dredged material disposal sites. Final Report prepared by TerEce Corp. for U.S. Army Engineer Waterways Experiment Station, Technical Report EL-81-1, 286 pp.

Peterson, C.H., D.H.M. Hickerson, and G.G. Johnson. 2000. Short-term consequences of nourishment and bulldozing on the dominant large invertebrates of a sandy beach. Journal of Coastal Research 16: 368-378.

Peterson, C.H. and M.J. Bishop. 2005. Assessing the environmental impacts of beach nourishment. Bioscience 55:887-896.

Peterson, C.H., M.J. Bishop, G.A. Johnson, L.M. D’Anna, and L.M. Manning. 2006. Exploiting beach filling as an unaffordable experiment: benthic intertidal impacts propagating upwards to shorebirds. Journal of Experimental Marine Biology and Ecology 338: 205-221.

Plumb, R.H., Jr. 1981. Procedures for handling and chemical analysis of sediment and water samples, Technical Report EPA ICE-81-1, prepared by Great Lakes Laboratory, State University College at Buffalo, NY, for the U.S. Environmental Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredge and Fill Material. Published by the U.S. Army Corps of Engineers Waterway Experiment Station, Vicksburg, Miussissippi.

Rakocinski, C.F., R.W. Heard, S.E. LeCroy, L.A. McLelland, and T. Simons. 1996. Responses by macrobenthic assemblages to extensive beach restoration at Perdido Key, Florida, USA. Journal of Coastal Research 12: 326-353.

Robertson, J.R., W.J. Pfeiffer. 1982. Deposit-feeding by the ghost crab Ocypode quadrata (Fabricus). Journal of Experimental Marine Biology and Ecology 56:165-177.

Sanchez-Moyano, J.E., D.A. Fa, F.J. Estacio, J.C. Garcia-Gomez. 2006. Monitoring of marine benthic communities and taxonomic resolution: an approach through diverse habitats and substrates along the southern Iberian coastline. Helgoland Marine Research 60:243-255.

Simon, J.L. and D.M. Dauer. 1977. Reestablishment of a benthic community following natural defaunation. In: Coull, B. (Ed.) Ecology of Marine Benthos. University of South Carolina Press, Columbia.

Spreybroeck, J. et al. 2006. Beach nourishment: an ecologically sound coastal defence alternative? A review. Aquatic Conservation: Marine and Freshwater Ecosystems 16:419-435.

Strachan, P.H., R.C. Smith, D.A.B Hamilton, A.C Taylor, and R.J.A. Atkinson. 1999. Studies on the ecology and behavior of the ghost crab, Ocypode cursor (L.) in northern Cyprus. Scientia Marina 63:51-60.

Turra, A., M.A.O. Gonçalves, and M.R. Denadai. 2005. Spatial distribution of the ghost crab Ocypode quadrata in low-energy tide-dominated sandy beaches. Journal of Natural History 39:2163-2177.

Valverde, HR, AC Trembanis, OH Pilkey. 1999. Summary of beach nourishment episodes on the US east coast barrier islands. Journal of Coastal Research 15:1100-1118.

Van Dolah, R.F., P.H. Wendt, R.M. Martore, M.V. Levisen, and W.A. Roumillat. 1992. A physical and biological monitoring study of the Hilton Head Beach nourishment project. Final Report, prepared by the South Carolina Marine Resources Research Institute, SC Marine Resources Division for the Town of Hilton Head Island and the South Carolina Coastal Council. 159 pp.

Van Dolah, R.F., R.M. Martore, A.E. Lynch, M.V. Levisen, P.H. Wendt, D.J. Whitaker, and W.D. Anderson. 1994. Environmental Evaluation of the Folly Beach Nourishment Project. Final Report. Prepared by the Marine Resources Division, South Carolina Department of Natural Resources, Charleston, SC for the US Army Corps of Engineers, Charleston District. 155 pp.

Van Dolah, R.F., B.J. Digre, P.T. Gayes, P. Donovan-Ealy, and M.W. Dowd. 1998. An evaluation of physical recovery rates in sand borrow sites used for beach nourishment projects in South Carolina. Final Report. Prepared for The South Carolina Task Force on Offshore Resources and the Minerals Management Service, Office of International activities and Marine Minerals. 76pp.

Wilber, D.H., D.G. Clarke, G.L. Ray, and M. Burlas. 2003. Response of surf zone fish to beach nourishment operations on the northern coast of New Jersey, USA. Marine Ecology Progress Series 250: 231-246.

Wolcott, T.G. 1978. Ecological role of ghost crabs, Ocypode quadrata (Fabricus) on an ocean beach: scavengers or predators? Journal of Experimental Marine Biology and Ecology 31:67-82

Appendix 1. List of station locations and depths for sites sampled at the Folly Beach Borrow (FA) and Reference (FR) areas. Depth is reported in meters. Latitude and longitude are reported in decimal degrees.

Station	Collection \#	Date	Depth	Latitude	Longitude
FA01	50003	4/12/2005	11.3	32.63591	79.86961
FA02	50004	4/12/2005	8.5	32.64164	79.86869
FA03	50005	4/12/2005	8.2	32.64181	79.86796
FA04	50006	4/12/2005	11.0	32.64398	79.85493
FA05	50007	4/12/2005	10.4	32.63527	79.86930
FA06	50008	4/12/2005	9.4	32.64209	79.86026
FA07	50009	4/12/2005	8.8	32.64149	79.86456
FA08	50010	4/12/2005	8.5	32.64299	79.86333
FA09	50011	4/12/2005	9.4	32.64367	79.86605
FA10	50012	4/12/2005	9.1	32.64402	79.86196
FR01	50027	4/12/2005	11.3	32.63350	79.85354
FR02	50028	4/12/2005	12.2	32.63769	79.85635
FR03	50029	4/12/2005	11.2	32.63348	79.85390
FR04	50030	4/12/2005	10.1	32.63041	79.85568
FR05	50031	4/12/2005	11.6	32.63787	79.85294
FR06	50032	4/12/2005	10.7	32.63179	79.85635
FR07	50033	4/12/2005	11.6	32.63573	79.85059
FR08	50034	4/12/2005	11.7	32.63293	79.86002
FR09	50035	4/12/2005	12.5	32.63961	79.84787
FR10	50036	4/12/2005	11.9	32.63888	79.84807
FA02	50129	11/4/2005	12.2	32.38500	79.52107
FA03	50130	11/4/2005	11.3	32.39509	79.52067
FA04	50131	11/4/2005	12.2	32.38644	79.51323
FA06	50132	11/4/2005	11.0	32.38520	79.51607
FA07	50133	11/4/2005	11.0	32.38487	79.51878
FA08	50134	11/4/2005	11.6	32.38572	79.51774
FA10	50135	11/4/2005	12.5	32.38634	79.51696
FA11	50136	11/4/2005	11.3	32.38662	79.51444
FA13	50137	11/4/2005	11.9	32.38451	79.52032
FA14	50138	11/4/2005	10.4	32.38570	79.51799
FR01	50141	11/4/2005	10.1	32.37995	79.51200
FR02	50142	11/4/2005	11.3	32.38250	79.51377
FR03	50143	11/4/2005	10.4	32.38001	79.51212
FR04	50144	11/4/2005	9.2	32.37818	79.51322
FR05	50145	11/4/2005	11.6	32.38259	79.51163
FR06	50146	11/4/2005	9.5	32.37896	79.51382
FR07	50147	11/4/2005	10.4	32.38144	79.51023
FR08	50148	11/4/2005	10.4	32.37969	79.51593
FR09	50149	11/4/2005	11.6	32.38374	79.50864
FR10	50150	11/4/2005	10.7	32.38336	79.50877
FA04	60183	5/4/2006	10.4	32.64404	79.85490
FA06	60184	5/4/2006	10.7	32.64206	79.86025
FA07	60185	5/4/2006	9.8	32.64137	79.86469
FA08	60186	5/4/2006	11.0	32.64293	79.86311
FA10	60187	5/4/2006	11.9	32.64386	79.86202
FA11	60188	5/4/2006	10.7	32.64419	79.85728

Appendix 1. List of station locations and depths for sites sampled at the Folly Beach Borrow (FA) and Reference (FR) areas. Depth is reported in meters. Latitude and longitude are reported in decimal degrees.

Station	Collection $\#$	Date	Depth	Latitude	Longitude
FA13	60189	$5 / 4 / 2006$	11	32.64095	79.86737
FA14	60190	$5 / 4 / 2006$	10.7	32.64285	79.86355
FA02	60191	$5 / 4 / 2006$	11.3	32.64173	79.86862
FA03	60192	$5 / 4 / 2006$	10.7	32.64190	79.86469
FR01	60195	$5 / 4 / 2006$	10.4	32.63350	79.85352
FR02	60196	$5 / 4 / 2006$	11.6	32.63571	79.85632
FR03	60197	$5 / 4 / 2006$	10.7	32.63342	79.85355
FR04	60198	$5 / 4 / 2006$	10.1	32.63024	79.85508
FR05	60199	$5 / 4 / 2006$	11.6	32.83758	79.85313
FR06	60200	$5 / 4 / 2006$	10.1	32.63173	79.85621
FR07	60201	$5 / 4 / 2006$	11.0	32.63575	79.85075
FR08	60202	$5 / 4 / 2006$	10.4	32.63274	79.86021
FR09	60203	$5 / 4 / 2006$	11.6	32.63964	79.84830
FR10	60204	$5 / 4 / 2006$	11.6	32.63890	79.84796
FA02	60237	$11 / 1 / 2006$	9.8	32.64187	79.86977
FA03	60238	$11 / 1 / 2006$	10.7	32.64193	79.86800
FA04	60239	$11 / 1 / 2006$	10.1	32.64334	79.85512
FA06	60240	$11 / 1 / 2006$	10.1	32.64186	79.86033
FA07	60241	$11 / 1 / 2006$	9.8	32.64194	79.86464
FA08	60242	$11 / 1 / 2006$	10.1	32.64281	79.86325
FA10	60243	$11 / 1 / 2006$	11.3	32.64390	79.86183
FA11	60244	$11 / 1 / 2006$	10.4	32.64425	79.85736
FA13	60245	$11 / 1 / 2006$	10.4	32.64087	79.86742
FA14	60246	$11 / 1 / 2006$	10.1	32.64293	79.85429
FR01	60249	$11 / 1 / 2006$	8.8	32.63337	79.82349
FR02	60250	$11 / 1 / 2006$	9.1	32.63753	79.85626
FR03	60251	$11 / 1 / 2006$	9.4	32.63353	79.85361
FR04	60252	$11 / 1 / 2006$	8.8	32.63028	79.85544
FR05	60253	$11 / 1 / 2006$	10.7	32.63773	79.85257
FR06	60254	$11 / 1 / 2006$	9.1	32.63176	79.82635
FR07	60255	$11 / 1 / 2006$	10.4	32.63568	79.85048
FR08	60256	$11 / 1 / 2006$	9.8	32.63280	79.86008
FR09	60257	$11 / 1 / 2006$	10.7	32.63857	79.84889
FR10	60258	$11 / 1 / 2006$	10.4	32.63887	79.84803

Appendix 2. Characteristics of surficial sediment cores collected from grab samples taken at Folly Borrow Area (FA) and Reference Area (FR) from April 2005 through November 2006. VF = very fine sand, $F=$ fine sand, $M=$ medium sand, $C=$ coarse sand. MW = medium well, $\mathrm{W}=$ well, $\mathrm{P}=$ poor, $\mathrm{M}=$ medium. $\mathrm{SD}=$ standard deviation.
Organic matter content reported as percent.

Station	Percent Sand	Percent Silt/Clay	$\begin{aligned} & \text { Percent } \\ & \mathrm{CaCO}_{3} \end{aligned}$	Organic Matter	$\overline{\mathrm{X}}$	$\begin{aligned} & \text { Size } \\ & \text { Class } \end{aligned}$	SD	Sorting Descr.	Mode
April 12, 2005 pre nourishment sampling									
FA01	85.0	6.1	8.9	1.4	2.9	F	0.748	M	3.5
FA02	20.6	2.4	77.0	1.9	1.4	M	0.731	M	1.5
FA03	39.2	2.2	58.6	1.9	1.6	M	0.787	M	1.5
FA04	47.0	49.5	3.5	8.1	2.6	F	0.737	M	3.0
FA05	91.1	1.0	7.9	0.9	2.6	F	0.625	MW	3.0
FA06	82.9	1.6	15.5	0.8	2.3	F	0.544	MW	2.5
FA07	88.3	2.5	9.3	0.9	2.8	F	0.532	MW	3.0
FA08	50.6	1.9	47.6	1.5	1.6	M	0.775	M	1.5
FA09	61.1	0.8	38.1	1.7	1.7	M	0.737	M	1.5
FA10	58.4	3.7	37.9	1.4	2.2	F	0.914	M	3.0
Mean	62.4	7.2	30.4	2.0	2.2				
April 12, 2005 pre nourishment sampling									
FR01	62.1	1.3	36.6	1.4	1.4	M	0.811	M	1.5
FR02	65.4	5.0	29.6	1.6	1.6	M	1.434	P	1.0
FR03	48.9	1.9	49.3	1.9	0.7	C	0.819	M	1.0
FR04	62.0	2.3	35.7	1.6	1.1	M	0.673	MW	1.0
FR05	77.0	2.0	21.0	0.8	0.9	C	0.771	M	1.0
FR06	54.9	1.6	43.5	1.7	1.3	M	0.853	M	1.5
FR07	63.0	1.4	35.6	1.7	1.0	M	0.890	M	1.5
FR08	57.7	4.2	38.1	1.4	1.6	M	0.836	M	1.5
FR09	82.4	1.7	15.9	0.9	1.5	M	1.016	P	3.0
FR10	90.3	1.3	8.3	0.5	0.8	C	0.625	MW	1.0
Mean	66.4	2.3	31.4	1.4	1.2				

November 4, 2005 immediate post nourishment sampling

FA02	84.1	4.6	11.3	1.5	3.1	VF	0.464	W	3.5
FA03	9.3	88.2	2.5	20.0	3.4	VF	0.552	MW	4.0
FA04	71.7	26.2	2.1	3.4	3.0	VF	0.467	W	3.0
FA06	93.6	2.4	4.0	1.1	2.8	F	0.447	W	3.0
FA07	92.2	3.2	4.6	1.5	3.2	VF	0.363	W	3.5
FA08	93.8	3.2	3.0	1.3	2.7	F	0.477	W	3.0
FA10	1.2	96.8	1.9	24.9	3.2	VF	0.942	M	4.0
FA11	78.0	14.9	7.0	3.2	3.1	VF	0.516	MW	3.5
FA13	91.6	2.5	5.9	1.2	3.0	VF	0.405	W	3.0
FA14	93.9	2.6	3.5	0.9	2.7	F	0.481	W	$\mathbf{3 . 0}$
Mean	$\mathbf{7 0 . 9}$	$\mathbf{2 4 . 5}$	$\mathbf{4 . 6}$	$\mathbf{5 . 9}$	$\mathbf{3 . 0}$				

November 4, 2005 immediate post nourishment sampling

FR01	65.3	1.5	33.2	1.5	1.7	M	0.796	M	1.5
FR02	86.2	2.2	11.7	1.1	2.5	F	0.993	M	3.0
FR03	56.9	1.9	41.2	1.8	1.6	M	1.021	P	1.5
FR04	50.5	1.4	48.1	1.8	2.1	F	0.704	MW	2.0
FR05	78.7	1.7	19.6	0.7	0.9	C	0.771	M	1.0
FR06	62.4	1.1	36.6	1.4	1.2	M	0.789	M	1.5
FR07	66.8	1.1	32.1	1.5	0.9	C	0.759	M	1.0
FR08	82.9	1.3	15.8	0.9	2.4	F	0.725	M	3.0
FR09	71.1	1.9	27.0	1.2	1.8	M	1.068	P	3.0
FR10	85.9	1.6	12.5	0.7	0.8	C	0.870	M	1.0
Mean	$\mathbf{7 0 . 7}$	$\mathbf{1 . 6}$	$\mathbf{2 7 . 8}$	$\mathbf{1 . 3}$	$\mathbf{1 . 6}$				

Appendix 2. Characteristics of surficial sediment cores collected from grab samples taken at Folly Borrow Area(FA) and Reference Area (FR) from April 2005 through November 2006. VF = very fine sand, F = fine sand, $M=$ medium sand, $C=$ coarse sand. $M W=$ medium well, $W=$ well, $P=$ poor, $M=$ medium. $S D=$ standard deviation. Organic matter content reported as percent.

Station	$\begin{aligned} & \text { Percent } \\ & \text { Sand } \end{aligned}$	Percent Silt/Clay	$\begin{aligned} & \text { Percent } \\ & \mathrm{CaCO}_{3} \end{aligned}$	$\begin{aligned} & \text { Organic } \\ & \text { Matter } \end{aligned}$	$\overline{\mathbf{X}}$	$\begin{aligned} & \text { Size } \\ & \text { Class } \end{aligned}$	SD	Sorting Descr.	Mode
May 4, 20066 months post nourishment sampling									
FA02	84.4	7.5	8.1	1.5	3.2	VF	0.412	W	3.5
FA03	78.1	13.6	8.3	1.6	3.2	VF	0.455	W	3.5
FA04	82.2	9.6	8.2	0.6	3.7	VF	1.898	P	3.0
FA06	86.9	8.2	4.9	1.0	2.7	F	0.519	MW	3.0
FA07	83.9	9.6	6.5	0.9	3.2	VF	0.413	W	3.5
FA08	90.5	4.6	5.0	1.0	2.9	F	0.433	W	3.0
FA10	1.1	85.1	13.8	12.7	3.6	VF	0.425	W	4.0
FA11	88.2	4.2	7.7	1.0	2.6	F	0.629	MW	3.0
FA13	69.4	21.5	9.1	3.1	3.3	VF	0.418	W	3.5
FA14	91.8	3.7	4.5	0.7	2.9	F	0.428	W	3.0
Mean	75.6	16.8	7.6	2.4	3.1				
May 4, 20066 months post nourishment sampling									
FR01	55.5	1.3	43.2	1.8	1.6	M	0.879	M	1.5
FR02	72.9	13.2	13.9	1.3	1.3	M	1.338	P	1
FR03	60.0	5.8	34.2	1.4	1.5	M	0.935	M	1.5
FR04	68.6	2.2	29.2	1.4	1.6	M	0.706	MW	1.5
FR05	74.2	0.2	25.6	0.7	1.0	C	0.825	M	1.0
FR06	58.0	9.0	33.0	1.2	1.5	M	0.911	M	1.5
FR07	64.1	7.4	28.6	1.2	1.6	M	0.812	M	1.5
FR08	81.9	1.4	16.7	0.8	2.3	F	0.638	MW	3.0
FR09	85.0	1.6	13.5	0.8	0.8	C	0.779	M	1.0
FR10	82.4	1.8	15.8	0.6	0.8	C	0.806	M	1.0
Mean	70.3	4.4	25.4	1.1	1.4				
November 1, 200612 months post nourishment sampling									
FA02	30.1	63.1	6.8	8.5	3.4	VF	0.417	W	4.0
FA03	32.0	60.1	7.9	10.2	3.4	VF	0.461	W	4.0
FA04	92.1	2.1	5.8	1.1	2.7	F	0.583	MW	3.0
FA06	92.3	2.2	5.5	1.5	2.8	F	0.468	W	3.0
FA07	89.2	4.8	6.0	1.6	3.1	VF	0.392	W	3.5
FA08	20.8	75.3	3.9	1.5	3.0	F	1.097	P	3.5
FA10	91.2	2.8	6.1	13.8	2.9	F	0.436	W	3.0
FA11	78.0	6.1	15.9	1.6	2.7	F	0.608	MW	3.0
FA13	72.9	16.6	10.5	1.1	3.3	VF	0.435	W	3.5
FA14	91.1	2.5	6.5	4.0	2.7	F	0.509	MW	3.0
Mean	69.0	23.5	7.5	4.5	3.0				
November 1, 200612 months post nourishment sampling									
FR01	48.2	1.0	50.8	2.1	1.2	M	0.954	M	1.5
FR02	74.8	0.7	24.5	0.7	1.7	M	1.043	P	1.0
FR04	80.7	5.6	13.6	1.7	0.8	C	0.752	M	1.5
FR05	57.6	0.8	41.6	1.6	1.3	M	1.035	P	1.0
FR06	67.5	0.5	32.0	1.6	1.2	M	0.824	M	1.5
FR07	47.1	0.1	52.8	2.1	1.2	M	0.904	M	1.5
FR08	78.9	0.1	21.0	1.0	2.4	F	0.569	MW	1.5
FR09	78.9	0.5	20.6	1.6	0.5	C	0.695	MW	3.0
FR10	81.7	0.3	18.1	0.9	0.6	C	0.698	MW	1.0
Mean	68.4	1.1	30.6	1.5	1.2				

Appendix 3. Characteristics of composite sediment cores collected from Folly Beach at Nourished beach sites (FN) and control beach sites (FC) from April 2005 through May 2006. VF = very fine sand, $\mathrm{F}=$ fine sand, $\mathrm{M}=$ medium sand, $\mathrm{C}=$ coarse sand. $\mathrm{MW}=$ medium well, $\mathrm{W}=$ well, $\mathrm{P}=$ poor, $\mathrm{M}=$ medium. $\mathrm{SD}=$ standard deviation.
Organic matter content reported as percent.

Station	Percent Sand	Percent Silt/Clay	$\begin{aligned} & \text { Percent } \\ & \mathrm{CaCO}_{3} \end{aligned}$	Organic Matter	$\overline{\mathbf{X}}$	$\begin{aligned} & \text { Size } \\ & \text { Class } \end{aligned}$	SD	Sorting Descr.	Mode
April 5, 2005 pre nourishment sampling									
FN01	88.2	1.6	10.2	0.9	1.8	M	0.530	MW	2.0
FN01	89.7	1.5	8.7	1.1	2.3	F	0.596	MW	3.0
FN01	88.0	1.1	10.9	1.2	2.3	F	0.547	MW	2.5
FN01	89.4	1.4	9.2	1.1	2.5	F	0.552	MW	3.0
FN01	89.5	1.6	8.9	0.7	2.5	F	0.549	MW	3.0
FN02	89.5	1.7	8.8	0.8	2.4	F	0.567	MW	2.5
FN02	90.3	1.5	8.2	0.9	2.5	F	0.634	MW	3.0
FN02	86.8	1.7	11.5	1.0	2.4	F	0.551	MW	3.0
FN02	88.7	1.0	10.3	1.1	2.5	F	0.576	MW	3.0
FN02	90.8	1.4	7.8	1.1	2.4	F	0.531	MW	2.5
FN03	81.2	1.4	17.4	0.9	2.3	F	0.691	MW	3.0
FN03	83.1	1.9	15.0	1.2	2.3	F	0.592	MW	2.5
FN03	82.6	2.0	15.4	1.2	2.4	F	0.604	MW	3.0
FN03	86.2	1.8	12.0	1.0	2.4	F	0.568	MW	3.0
FN03	81.1	2.1	16.8	1.2	2.4	F	0.570	MW	3.0
Mean	87.0	1.6	11.4	1.0	2.4				
April 5, 2005 pre nourishment sampling									
FC01	89.4	1.8	8.7	2.3	2.5	F	0.548	MW	3.0
FC01	85.7	1.8	12.5	1.6	1.9	M	0.588	MW	2.0
FC01	88.4	1.8	9.8	0.9	2.5	F	0.544	MW	3.0
FC01	84.7	2.2	13.1	1.6	2.4	F	0.557	MW	2.5
FC01	84.5	1.9	13.6	1.7	2.4	F	0.593	MW	2.5
FC02	82.5	0.8	16.7	0.9	2.4	F	0.594	MW	3.0
FC02	79.7	2.0	18.3	1.1	1.7	M	0.625	MW	2.0
FC02	81.6	1.7	16.6	1.0	2.3	F	0.678	MW	3.0
FC02	84.0	1.6	14.4	2.3	2.4	F	0.614	MW	3.0
FC02	78.6	1.2	20.2	1.8	2.2	F	0.707	MW	2.5
FC03	82.3	2.8	15.0	1.0	2.2	F	0.622	MW	2.5
FC03	80.6	2.1	17.3	2.1	2.2	F	0.608	MW	2.5
FC03	68.0	2.3	29.7	1.4	2.2	F	0.658	MW	2.5
FC03	83.7	2.5	13.8	1.3	2.3	F	0.566	MW	2.5
FC03	82.8	2.6	14.6	1.1	2.4	F	0.611	MW	3.0
Mean	82.4	1.9	15.6	1.5	2.3				
June 8, 2005 immediate post nourishment sampling									
FN02	94.3	0.6	5.1	0.4	2.2	F	0.603	MW	2.5
FN02	96.6	0.7	2.6	0.4	2.2	F	0.502	MW	2.5
FN02	97.8	0.6	1.6	0.4	1.9	M	0.567	MW	2.0
FN02	97.4	0.8	1.8	0.4	2.3	F	0.479	W	2.5
FN02	97.7	0.6	1.7	0.4	2.3	F	0.510	MW	2.5
FN03	91.8	1.1	7.1	0.5	2.1	F	0.739	M	2.5
FN03	93.3	1.4	5.3	0.4	no data				
FN03	91.8	1.2	7.0	0.5	2.3	F	0.814	M	3.0
FN03	85.5	0.9	13.6	0.6	2.1	F	0.736	M	2.5
FN03	84.6	1.0	14.4	0.6	2.1	F	0.766	M	2.5
Mean	93.1	0.9	6.0	0.5	2.2				

Appendix 3. Characteristics of composite sediment cores collected from Folly Beach at Nourished beach sites (FN) and control beach sites (FC) from April 2005 through May 2006. VF = very fine sand, $\mathrm{F}=$ fine sand, $\mathrm{M}=$ medium sand, $\mathrm{C}=$ coarse sand. $\mathrm{MW}=$ medium well, $\mathrm{W}=$ well, $\mathrm{P}=$ poor, $\mathrm{M}=$ medium. $\mathrm{SD}=$ standard deviation.
Organic matter content reported as percent.

Station	Percent Sand	Percent Silt/Clay	$\begin{gathered} \text { Percent } \\ \mathrm{CaCO}_{3} \end{gathered}$	Organic Matter	\bar{x}	$\begin{aligned} & \text { Size } \\ & \text { Class } \end{aligned}$	SD	Sorting Descr.	Mode
June 9, 2005 immediate post nourishment sampling									
FC01	87.5	0.7	11.8	1.06148	2.5	F	0.600	MW	3.0
FC01	81.7	1.4	16.9	1.0	2.3	F	0.777	M	3.0
FC01	86.9	0.7	12.3	1.0	2.5	F	0.612	MW	3.0
FC01	89.1	1.1	9.8	1.2	2.5	F	0.539	MW	3.0
FC01	90.4	0.8	8.8	1.0	2.5	F	0.496	W	3.0
FC02	84.7	2.0	13.2	0.9	2.5	F	0.531	MW	3.0
FC02	88.9	2.2	8.9	1.0	2.5	F	0.548	MW	3.0
FC02	86.0	2.0	12.0	1.2	2.4	F	0.543	MW	2.5
FC02	87.4	2.1	10.5	1.0	2.5	F	0.609	MW	3.0
FC02	90.5	1.9	7.5	1.1	2.5	F	0.497	W	3.0
FC03	90.2	1.9	7.8	1.0	2.5	F	0.562	MW	3.0
FC03	91.0	1.8	7.2	1.0	2.5	F	0.539	MW	3.0
FC03	88.0	2.0	10.0	1.1	2.4	F	0.552	MW	3.0
FC03	87.7	2.0	10.3	1.2	2.5	F	0.558	MW	3.0
FC03	90.8	2.0	7.2	1.0	2.7	F	0.592	MW	3.0
Mean	88.1	1.6	10.3	1.0	2.5				
September 15, 20053 months post nourishment sampling									
FN01	86.7	1.6	11.7	0.9	2.2	F	0.698	MW	2.5
FN01	89.4	1.6	9.0	0.8	2.2	F	0.716	M	2.5
FN01	87.2	1.5	11.3	0.9	2.2	F	0.708	MW	2.5
FN01	85.3	1.6	13.1	0.8	2.2	F	0.759	M	2.5
FN01	85.5	1.5	13.0	0.9	2.1	F	0.718	M	2.5
FN02	76.7	1.3	22.1	0.8	2.0	F	0.873	M	2.5
FN02	77.4	1.2	21.5	0.7	2.0	F	0.826	M	2.5
FN02	83.4	1.6	15.0	0.6	2.1	F	0.912	M	3.0
FN02	82.4	1.0	16.6	0.7	2.1	F	0.920	M	2.5
FN02	85.3	0.8	13.9	0.7	2.1	F	0.801	M	2.5
FN03	72.8	1.6	25.7	0.7	2.1	F	0.836	M	2.5
FN03	71.1	1.3	27.5	1.0	2.1	F	0.879	M	3.0
FN03	75.4	1.8	22.8	0.9	2.2	F	0.781	M	2.5
FN03	70.8	1.5	27.7	0.8	1.9	M	0.905	M	2.5
FN03	76.6	1.4	22.0	0.9	2.1	F	0.836	M	2.5
Mean	80.4	1.4	18.2	0.8	2.1				
September 15, 20053 months post nourishment sampling									
FC01	80.5	2.1	17.3	0.9	2.3	F	0.747	M	3.0
FC01	76.8	3.2	20.0	1.0	2.5	F	0.751	M	3.0
FC01	85.9	1.9	12.3	0.9	2.4	F	0.715	M	3.0
FC01	82.8	2.1	15.2	0.9	2.5	F	0.621	MW	3.0
FC01	70.3	1.6	28.1	0.7	2.4	F	0.670	MW	3.0
FC02	84.6	0.9	14.5	0.9	2.4	F	0.630	MW	2.5
FC02	80.5	1.0	18.5	0.9	2.3	F	0.693	MW	3.0
FC02	75.7	1.2	23.1	1.0	2.2	F	0.791	M	3.0
FC02	85.9	1.0	13.1	0.8	2.2	F	0.665	MW	2.5
FC02	78.7	1.3	20.0	1.0	2.5	F	0.656	MW	3.0
FC03	79.9	1.7	18.4	0.8	2.4	F	0.693	MW	3.0
FC03	88.1	1.7	10.3	0.9	2.5	F	0.582	MW	3.0
FC03	84.1	1.5	14.4	0.8	2.4	F	0.685	MW	3.0
FC03	90.4	1.7	7.9	0.9	2.4	F	0.538	MW	2.5
FC03	82.3	1.6	16.0	0.5	2.5	F	0.593	MW	3.0
Mean	81.8	1.6	16.6	0.9	2.4				

Appendix 3. Characteristics of composite sediment cores collected from Folly Beach at Nourished beach sites (FN) and control beach sites (FC) from April 2005 through May 2006. VF = very fine sand, $\mathrm{F}=$ fine sand, $\mathrm{M}=$ medium sand, $\mathrm{C}=$ coarse sand. $\mathrm{MW}=$ medium well, $\mathrm{W}=$ well, $\mathrm{P}=$ poor, $\mathrm{M}=$ medium. $\mathrm{SD}=$ standard deviation.
Organic matter content reported as percent.

Station	$\begin{aligned} & \text { Percent } \\ & \text { Sand } \end{aligned}$	Percent Silt/Clay	$\begin{aligned} & \text { Percent } \\ & \mathrm{CaCO}_{3} \end{aligned}$	Organic Matter	$\overline{\mathrm{x}}$	$\begin{aligned} & \text { Size } \\ & \text { Class } \end{aligned}$	SD	Sorting Descr.	Mode
January 3, 20066 months post nourishment sampling									
FN01	92.0	1.8	6.2	0.6	2.2	F	0.563	MW	2.5
FN01	94.7	1.7	3.6	0.6	2.3	F	0.520	MW	3.0
FN01	92.7	1.6	5.7	1.5	2.1	F	0.528	MW	2.5
FN01	90.6	1.7	7.7	0.6	2.2	F	0.627	MW	3.0
FN01	91.1	1.8	7.2	0.6	2.2	F	0.536	MW	3.0
FN02	89.8	1.7	8.5	0.6	2.4	F	0.631	MW	3.0
FN02	93.8	1.7	4.5	0.6	2.3	F	0.512	MW	2.5
FN02	89.6	2.0	8.4	0.6	2.2	F	0.689	MW	3.0
FN02	90.4	2.0	7.7	0.7	2.2	F	0.582	MW	3.0
FN02	86.5	2.0	11.5	0.7	2.3	F	0.688	MW	3.0
FN03	93.5	1.7	4.8	0.6	2.4	F	0.477	W	2.5
FN03	93.4	2.0	4.6	0.6	2.5	F	0.574	MW	2.5
FN03	92.8	2.0	5.2	0.6	2.5	F	0.531	MW	3.0
FN03	93.2	1.6	5.2	0.6	2.3	F	0.574	MW	2.5
FN03	92.4	2.0	5.6	0.6	2.3	F	0.625	MW	2.5
Mean	91.8	1.8	6.4	0.7	2.3				
January 4, 20066 months post nourishment sampling									
FC01	93.1	1.8	5.2	0.7	2.4	F	0.497	W	3
FC01	93.5	1.9	4.6	0.9	2.3	F	0.438	W	2.5
FC01	91.8	1.9	6.2	0.5	2.4	F	0.529	MW	2.5
FC01	91.3	2.0	6.7	1.0	2.3	F	0.501	MW	2.5
FC01	91.1	2.0	6.9	0.6	2.3	F	0.579	MW	2.5
FC02	78.8	1.6	19.7	0.6	2.2	F	0.554	MW	2.5
FC02	88.6	1.9	9.4	1.0	2.2	F	0.587	MW	2.5
FC02	88.9	1.7	9.4	0.6	2.2	F	0.540	MW	2.5
FC02	84.2	1.8	14.0	0.7	2.2	F	0.656	MW	2.5
FC02	85.5	2.1	12.4	0.7	2.3	F	0.525	MW	2.5
FC03	84.0	1.7	14.4	0.6	2.1	F	0.625	MW	2.5
FC03	87.0	1.9	11.1	0.6	2.2	F	0.591	MW	2.5
FC03	87.8	1.8	10.4	0.6	2.1	F	0.616	MW	2.5
FC03	88.5	1.8	9.7	0.6	2.2	F	0.496	W	2.5
FC03	83.8	1.8	14.4	0.6	2.2	F	0.672	MW	2.5
Mean	87.9	1.8	10.3	0.7	2.2				
May 24, 200612 months post nourishment sampling									
FN01	84.3	2.2	13.5	0.6	2.1	F	0.674	MW	2.5
FN01	84.8	1.7	13.4	0.6	2.0	F	0.639	MW	2.5
FN01	84.8	2.9	12.3	0.7	2.0	F	0.710	M	2.5
FN01	88.7	2.1	9.2	0.5	2.1	F	0.676	MW	2.5
FN01	89.6	0.6	9.8	0.6	2.1	F	0.635	MW	2.5
FN02	90.0	1.6	8.4	0.5	2.2	F	0.699	MW	3.0
FN02	85.9	1.6	12.5	0.6	2.0	M	0.678	MW	2.5
FN02	89.3	1.5	9.2	0.7	2.0	F	0.681	MW	2.5
FN02	90.5	1.8	7.7	0.7	2.1	F	0.621	MW	2.5
FN02	83.5	2.0	14.5	0.6	1.9	M	0.788	M	3.0
FN03	92.9	1.7	5.4	0.6	2.3	F	0.512	MW	2.5
FN03	92.5	1.4	6.1	0.4	2.3	F	0.593	MW	3.0
FN03	95.5	0.0	4.4	0.2	2.3	F	0.499	W	2.5
FN03	94.4	1.3	4.3	0.5	2.2	F	0.576	MW	2.5
FN03	91.9	1.9	6.1	1.0	2.2	F	0.514	MW	2.5
	89.2	1.6	9.1	0.6	2.1				

Appendix 3. Characteristics of composite sediment cores collected from Folly Beach at Nourished beach sites (FN) and control beach sites (FC) from April 2005 through May 2006. VF = very fine sand, $\mathrm{F}=$ fine sand, $\mathrm{M}=$ medium sand, $\mathrm{C}=$ coarse sand. $\mathrm{MW}=$ medium well, $\mathrm{W}=$ well, $\mathrm{P}=$ poor, $\mathrm{M}=$ medium. $\mathrm{SD}=$ standard deviation.
Organic matter content reported as percent.

Station	Percent Sand	Percent Silt/Clay	Percent $^{\text {CaCO }} \mathbf{3}$	Organic Matter	$\overline{\mathbf{X}}$	Size Class	SD	Sorting Descr.	Mode
May 25-26, 2006 12 months post nourishment sampling									
FC01	92.7	1.1	6.2	0.4	2.2	F	0.581	MW	2.5
FC01	93.3	1.1	5.6	0.4	2.2	F	0.565	MW	2.5
FC01	87.4	1.7	10.9	0.5	2.2	F	0.614	MW	2.5
FC01	91.7	1.3	7.0	0.5	2.2	F	0.612	MW	2.5
FC01	92.3	1.5	6.2	0.4	2.2	F	0.581	MW	2.5
FC02	86.7	1.8	11.4	0.5	2.1	F	0.634	MW	2.5
FC02	84.4	1.4	14.3	0.7	2.1	F	0.652	MW	2.5
FC02	87.2	2.0	10.8	0.6	2.1	F	0.645	MW	2.5
FC02	88.2	1.9	9.9	0.4	2.2	F	0.593	MW	2.5
FC02	89.1	1.0	9.9	0.6	2.0	F	0.665	MW	2.5
FC03	89.7	1.0	9.3	0.6	2.1	F	0.671	MW	3.0
FC03	78.9	2.2	18.9	0.5	2.1	F	0.654	MW	2.5
FC03	84.0	1.8	14.2	0.8	2.2	F	0.739	M	3.0
FC03	92.2	1.1	6.7	0.5	2.2	F	0.571	MW	2.5
FC03	73.8	1.1	25.1	0.6	2.0	M	0.733	M	2.5
	87.4	1.5	11.1	$\mathbf{0 . 5}$	$\mathbf{2 . 1}$				

Appendix 4. Summary of benthic macrofauna in the Folly Reference and Borrow Areas. All values represent the total number of individuals in 10 grab samples. The higher taxa group of each species is indicated next to the species name ($\mathrm{M}=\mathrm{mollusc}$, $A=$ amphipod, $P=$ Polychaete, $O=o t h e r ~ t a x a) . ~$

Species Name		Reference				Impact			
		Pre	Post	6 month Post	12 month Post	Pre	Post	6 month Post	12 month Post
Abra aequalis	M	8	4	13	0	0	2	3	0
Acanthohaustorius intermedius	A	0	0	0	4	5	0	4	0
Acanthohaustorius millsi	A	0	0	9	0	0	1	0	0
Accalathura crenulata	0	0	0	0	3	0	0	0	0
Acetes americanus	0	0	0	0	0	0	1	0	0
Acteocina candei	M	0	0	0	0	2	0	0	0
Actiniaria	0	85	1	0	0	0	0	1	0
Aglaophamus verrilli	P	0	0	0	2	0	1	2	1
Aligena elevata	M	0	0	0	0	0	2	7	0
Amastigos caperatus	P	0	0	0	0	61	0	0	0
Americamysis bahia	0	0	0	0	0	0	1	0	0
Ampelisca abdita	A	0	0	0	0	3	0	0	0
Ampelisca sp.	A	3	0	0	0	0	0	1	0
Ampharetidae	P	0	0	0	0	0	0	0	5
Amphicteis gunneri	P	11	0	2	0	38	0	0	0
Amphinomidae	P	0	0	0	1	0	0	0	0
Amphipoda	A	4	0	0	1	1	0	0	1
Amphiuridae	0	0	0	0	1	0	0	0	0
Anadara transversa	M	3	0	1	0	5	0	0	0
Ancistrosyllis hartmanae	P	0	0	0	1	3	0	0	0
Ancistrosyllis sp.	P	0	0	28	6	1	0	0	0
Aoridae	A	0	0	0	23	0	0	0	0
Apanthura magnifica	0	0	2	0	0	2	0	0	0
Aphelochaeta sp.	P	7	0	0	8	0	0	0	0
Arabella mutans	P	8	4	6	0	4	1	0	1
Arabella sp.	P	0	0	0	2	0	0	0	0
Arabellidae	P	0	0	0	7	0	0	0	0
Arcidae	M	1	0	0	3	2	0	0	0
Aricidea sp.	P	0	0	1	9	0	0	0	1
Aricidea wassi	P	0	0	0	0	0	0	2	0
Armandia agilis	P	0	4	0	17	0	22	8	8
Armandia maculata	P	1	0	1	32	1	0	1	0
Ascidiacea	0	0	0	2	0	0	0	0	0
Autolytus sp.	P	0	2	0	0	0	0	0	0
Barbatia sp.	M	0	5	0	0	0	0	0	0
Batea catharinensis	A	24	274	344	3	103	0	31	0
Bathyporeia parkeri	A	0	0	1	0	0	2	2	0
Bhawania heteroseta	P	60	58	53	86	52	0	1	0
Biffarius biformis	0	0	0	0	0	0	1	0	0
Bowmaniella floridana	0	0	0	0	0	0	5	0	0
Branchiostoma sp.	0	19	74	22	82	42	0	0	0
Brania sp.	P	2	0	1	5	0	0	0	0
Brania wellfleetensis	P	1	0	1	8	0	0	0	0
Caecum pulchellum	M	0	0	1	0	0	0	0	0
Caecum sp.	M	0	0	1	0	0	0	0	0
Calappidae	0	0	0	0	4	0	0	0	0
Calyptraea centralis	M	0	0	0	2	0	0	0	0
Cancer irroratus	0	0	0	0	0	1	0	0	0
Capitellidae	P	0	0	0	0	0	0	1	1
Carditidae	M	0	0	0	29	0	0	0	0
Carinomella lactea	0	1	1	0	0	4	2	0	8
Caulleriella sp.	P	0	7	2	92	0	0	0	1

Appendix 4 cont. Summary of benthic macrofauna in the Folly Reference and Borrow Areas. All values represent the total number of individuals in 10 grab samples. The higher taxa group of each species is indicated next to the species name ($\mathrm{M}=$ mollusc, $\mathrm{A}=$ amphipod, $\mathrm{P}=$ Polychaete, $\mathrm{O}=$ other taxa).

Species Name		Reference				Impact			
		Pre	Post	6 month Post	12 month Post	Pre	Post	6 month Post	12 month Post
Ceratonereis sp.	P	0	0	0	0	8	0	0	0
Chaetognatha	0	0	0	0	0	1	0	0	0
Chaetopleura apiculata	M	0	0	0	1	0	0	0	0
Chione cancellata	M	1	0	0	0	0	0	0	0
Chrysopetalidae	P	0	0	0	7	0	0	0	0
Cirolana polita	0	3	2	5	0	0	0	0	0
Cirratulidae	P	3	6	6	13	5	3	0	2
Cirriformia sp.	P	0	0	0	7	0	0	0	0
Cirrophorus sp.	P	2	2	3	0	0	0	0	0
Cistenides gouldii	P	0	0	0	0	1	0	1	0
Clymenella torquata	P	68	0	0	0	230	0	25	0
Copepoda	0	4	17	17	65	25	15	0	14
Corbula contracta	M	1	0	1	0	1	0	0	0
Corophiidae	A	1	0	1	8	0	0	1	0
Corophium sp.	A	11	7	5	0	1	0	0	0
Corophium tuberculatum	A	0	0	0	0	14	0	0	1
Costoanachis avara	M	0	0	0	0	2	0	0	0
Crassinella lunulata	M	124	43	36	73	52	0	0	0
Crassinella martinicensis	M	134	11	63	86	77	0	0	0
Crepidula fornicata	M	0	2	1	0	1	0	1	0
Crepidula plana	M	0	0	0	3	0	0	0	0
Cumacea	0	1	0	0	0	0	1	1	3
Cupuladria doma	0	23	0	388	1097	0	0	0	0
Cyathura burbancki	0	39	27	13	20	7	0	2	0
Cyclaspis pustulata	0	0	0	0	1	0	0	0	0
Cyclaspis varians	0	0	0	0	0	0	4	0	0
Decapoda	0	0	3	4	2	1	2	0	3
Dentatisyllis carolinae	P	0	11	0	0	0	0	0	0
Diopatra cuprea	P	18	4	3	5	6	0	1	0
Discoporella umbellata	0	0	0	0	1	0	0	0	0
Dissodactylus mellitae	0	0	0	0	1	0	0	0	0
Dorvilleidae	P	1	4	2	14	6	1	1	0
Drilonereis longa	P	3	0	0	0	2	1	1	0
Dulichiella appendiculata	A	0	2	0	1	0	0	0	0
Edotia sp.	P	1	2	0	2	0	0	0	0
Edotia triloba	0	1	1	1	0	8	1	3	0
Elasmopus levis	A	0	20	11	0	30	0	0	0
Elasmopus sp.	A	0	0	0	13	0	0	0	0
Emerita benedicti	0	0	1	0	0	0	0	0	0
Emerita talpoida	0	0	1	0	0	0	0	0	0
Enchytraeidae	0	0	0	19	0	0	0	0	0
Ensis directus	M	159	0	12	0	127	2	4	0
Eobrolgus spinosus	A	0	0	0	0	3	0	0	0
Epitomapta roseola	0	0	0	0	3	0	0	0	0
Ericthonius brasiliensis	A	3	10	7	5	1	0	0	0
Ervilia concentrica	M	0	0	0	0	1	0	0	0
Eteone heteropoda	P	8	0	0	0	1	0	1	0
Euceramus praelongus	0	1	0	0	0	0	0	0	0
Eudevenopus honduranus	A	0	1	1	1	5	29	5	21
Eupleura caudata	M	0	0	0	0	1	0	0	0

Appendix 4 cont. Summary of benthic macrofauna in the Folly Reference and Borrow Areas. All values represent the total number of individuals in 10 grab samples. The higher taxa group of each species is indicated next to the species name ($\mathrm{M}=$ mollusc, $\mathrm{A}=$ amphipod, $\mathrm{P}=$ Polychaete, $\mathrm{O}=$ other taxa).

Species Name	$\begin{aligned} & \text { त } \\ & 0 \\ & \text { OU } \\ & \stackrel{0}{U} \\ & \hline 0 \end{aligned}$	Reference				Impact			
		Pre	Post	6 month Post	12 month Post	Pre	Post	6 month Post	12 month Post
Eurydice piperata	0	0	0	0	2	0	0	0	0
Eurythoe sp.	P	0	0	0	2	0	0	0	0
Eusyllis sp.	P	0	0	0	2	0	0	0	0
Exogone dispar	P	0	0	0	3	2	0	0	0
Exogone sp.	P	16	8	3	1	9	0	3	0
Gammaridea	A	0	0	0	0	0	0	6	0
Gastropoda	M	2	0	1	0	1	0	0	0
Glottidia pyramidata	0	1	0	0	0	0	0	0	0
Glycera americana	P	15	19	3	0	2	2	24	1
Glycera asymmetrica	P	0	0	0	2	0	0	0	0
Glycera dibranchiata	P	0	0	0	1	0	0	2	0
Glycera oxycephala	P	0	0	0	13	24	0	0	0
Glycera papillosa	P	0	0	2	0	0	0	0	0
Glycera sp.	P	10	4	5	4	6	2	0	0
Glycinde solitaria	P	13	6	0	1	0	4	2	0
Glycinde sp.	P	0	0	0	3	0	0	0	0
Goniada littorea	P	0	6	0	1	0	8	1	8
Goniadides carolinae	P	5	5	9	7	15	0	0	0
Haminoea solitaria	M	0	0	0	0	0	0	5	0
Haustoriidae	A	0	0	0	0	0	2	0	0
Hemipholis elongata	0	5	0	1	0	2	0	0	0
Hemipodus roseus	P	5	0	52	27	0	0	0	1
Hesionidae	P	1	0	0	14	9	0	0	0
Heteropodarke heteromorpha	P	0	0	0	8	0	0	0	0
Hirudinea	0	0	0	0	12	0	0	0	0
Hydroides dianthus	P	0	0	0	0	0	1	0	0
Hypoconcha arcuata	0	1	0	0	0	0	0	0	0
Insecta	0	1	1	4	0	3	0	0	2
Isolda pulchella	P	0	0	0	0	3	0	0	0
Isopoda	0	1	0	0	6	0	0	0	0
Kinbergonuphis sp.	P	0	0	3	0	2	0	5	0
Laonice cirrata	P	0	0	0	1	0	0	0	0
Latreutes parvulus	0	0	1	0	0	0	0	0	0
Leitoscoloplos fragilis	P	1	0	0	0	3	1	10	0
Leitoscoloplos robustus	P	0	0	0	0	0	0	0	1
Leitoscoloplos sp.	P	1	0	1	0	0	0	0	0
Lembos smithi	A	0	0	0	0	4	0	0	0
Lepidonotus sublevis	P	0	0	0	0	1	0	0	0
Leptocheirus plumulosus	A	0	0	0	0	1	0	0	0
Leptochela serratorbita	0	0	1	0	1	1	1	0	1
Leptochela sp.	0	0	1	0	0	0	0	0	2
Leptognathia caeca	0	0	0	20	0	0	0	0	0
Leptonacea sp.	M	2	0	0	0	3	0	7	0
Leptosynapta tenuis	0	0	0	0	0	5	0	0	0
Leucon americanus	0	0	0	2	0	0	0	2	0
Listriella barnardi	A	0	0	0	0	1	9	9	2
Listriella clymenellae	A	0	0	0	0	0	0	0	3
Lucifer faxoni	0	0	0	0	0	0	2	0	0

Appendix 4 cont. Summary of benthic macrofauna in the Folly Reference and Borrow Areas. All values represent the total number of individuals in 10 grab samples. The higher taxa group of each species is indicated next to the species name ($\mathrm{M}=$ =mollusc, $\mathrm{A}=$ amphipod, $\mathrm{P}=$ Polychaete, $\mathrm{O}=$ other taxa).

Species Name	$\begin{aligned} & \text { त } \\ & \text { O} \\ & \text { O} \\ & \text { N } \end{aligned}$	Reference				Impact			
		Pre	Post	6 month Post	12 month Post	Pre	Post	6 month Post	12 month Post
Lucinidae	M	0	1	0	17	0	0	0	0
Lumbrineridae	P	1	0	0	0	0	0	0	0
Lumbrinerides sp.	P	0	0	0	0	0	0	0	1
Lumbrineris coccinea	P	0	0	0	2	0	0	0	0
Lumbrineris sp.	P	1	0	4	16	0	0	0	0
Lyonsia hyalina	M	0	0	2	0	0	0	0	0
Maera sp.	A	0	0	0	10	0	0	0	0
Magelona papillicornis	P	0	0	0	0	9	0	0	3
Magelona pettiboneae	P	0	0	0	0	0	0	0	4
Magelona phyllisae	P	0	0	0	0	2	0	0	0
Magelona rosea	P	0	0	0	5	12	0	0	0
Magelona sp.	P	0	4	16	0	11	34	124	23
Magelonidae	P	0	0	0	4	0	0	0	0
Maldanidae	P	1	0	0	0	0	0	0	7
Marginella sp.	M	0	0	1	0	1	0	0	0
Marginellidae	M	0	0	0	0	1	0	0	0
Mediomastus ambiseta	P	1	0	0	0	5	0	1	4
Mediomastus californiensis	P	0	0	0	3	24	0	0	0
Mediomastus sp.	P	19	11	8	17	67	17	426	0
Melanellidae	M	0	0	0	1	0	0	0	0
Melita nitida	A	0	3	0	0	0	0	0	0
Melita sp.	A	0	0	2	0	0	0	0	0
Melitidae	A	0	0	0	19	5	0	0	0
Mellita sp.	0	0	0	1	0	0	0	0	0
Metharpinia floridana	A	0	0	0	2	0	0	2	10
Microphthalmus sp.	P	1	0	0	0	0	0	0	0
Microprotopus raneyi	A	0	0	8	0	21	0	9	0
Molgula manhattensis	0	0	0	2	0	0	0	0	0
Molgula sp.	O	0	0	0	0	6	0	0	0
Monticellina sp.	P	12	2	1	2	0	0	0	0
Mooreonuphis nebulosa	P	0	0	0	0	0	4	0	0
Mooreonuphis pallidula	P	0	0	0	1	0	0	0	0
Mulinia lateralis	M	0	1	0	0	0	10	0	0
Mysida	O	0	0	0	1	0	1	0	0
Natica pusilla	M	1	0	2	0	1	3	4	5
Naticidae	M	0	0	0	0	1	0	0	0
Nematoda	O	119	93	427	937	108	9	15	88
Nemertea	0	21	16	17	21	20	6	10	6
Neopanope sayi	0	0	0	0	0	1	0	0	0
Nephtyidae	P	0	0	1	0	15	0	0	0
Nephtys bucera	P	0	0	0	1	0	0	0	0
Nephtys picta	P	8	9	6	3	4	0	55	9
Nephtys simoni	P	0	0	0	1	1	0	1	0
Nephtys sp.	P	0	0	2	0	1	0	0	0
Nereididae	P	0	11	2	1	2	1	0	0
Nereis riisei	P	0	0	0	7	0	0	0	0
Nereis sp.	P	0	0	0	0	6	0	0	0
Nereis succinea	P	18	8	4	14	54	0	0	0
Notomastus latericeus	P	0	0	0	0	0	0	39	1
Nucula proxima	M	0	0	0	0	0	0	1	0
Nucula sp.	M	0	1	1	0	2	0	1	0
Odontosyllis enopla	P	1	1	0	0	1	0	0	0
Ogyrides alphaerostris	0	0	0	0	0	0	1	0	1
Oligochaeta	0	1	3	0	22	0	0	0	0

Appendix 4 cont. Summary of benthic macrofauna in the Folly Reference and Borrow Areas. All values represent the total number of individuals in 10 grab samples. The higher taxa group of each species is indicated next to the species name ($\mathrm{M}=$ mollusc, $\mathrm{A}=$ amphipod, $\mathrm{P}=$ Polychaete, $\mathrm{O}=$ other taxa).

Species Name		Reference				Impact			
		Pre	Post	6 month Post	$\begin{aligned} & 12 \text { month } \\ & \text { Post } \end{aligned}$	Pre	Post	6 month Post	12 month Post
Olivella mutica	M	0	0	0	0	1	0	0	3
Ophelia denticulata	P	0	0	2	1	0	0	0	0
Opheliidae	P	0	0	0	1	0	0	0	1
Ophelina acuminata	P	0	0	0	10	1	0	3	29
Ophelina cylindricaudata	P	0	0	0	8	0	0	0	1
Ophelina sp.	P	0	0	0	1	0	0	0	1
Ophiuroidea	0	13	5	2	5	13	0	1	0
Orbiniidae	P	0	0	0	0	0	0	4	0
Ostracoda	0	0	0	0	1	0	0	1	0
Owenia fusiformis	P	0	0	0	1	3	0	11	1
Owenia sp.	P	0	0	0	1	0	0	0	0
Oxyurostylis smithi	0	89	7	12	6	497	6	10	9
Paguridae	0	2	0	0	0	0	0	0	0
Pagurus longicarpus	0	0	0	2	0	0	0	0	0
Pagurus sp.	0	1	5	2	1	0	0	0	0
Pananthura formosa	0	0	0	0	1	0	0	0	0
Panopeus herbstii	O	0	2	0	0	0	0	0	0
Paracaprella tenuis	A	0	1	0	0	0	0	0	0
Parametopella cypris	A	0	0	4	0	1	0	0	0
Paramphinome sp.	P	0	0	0	0	0	0	0	1
Paraonidae	P	0	0	1	0	0	0	0	0
Paraonis fulgens	P	0	0	1	0	0	0	1	0
Parapionosyllis sp.	P	0	0	1	0	15	0	0	0
Paraprionospio pinnata	P	0	0	0	1	0	21	18	4
Pelecypoda	M	1	0	0	6	2	0	1	15
Penaeoidea	0	0	0	0	0	0	3	0	0
Periclimenes sp.	0	0	0	0	0	0	1	0	0
Phoronida	0	0	0	0	0	0	0	2	0
Phoxocephalidae	A	0	0	0	3	0	0	0	1
Phyllangia americana	O	0	0	8	3	0	0	0	0
Phyllodoce arenae	P	2	0	3	0	1	1	29	0
Phyllodoce groenlandica	P	0	0	0	0	0	0	0	1
Phyllodoce madeirensis	P	0	0	0	0	5	0	0	0
Phyllodoce mucosa	P	0	0	0	0	3	0	0	0
Phyllodocidae	P	0	0	0	0	3	0	0	0
Pilargidae	P	1	3	0	0	1	0	0	0
Pinnixa sp.	0	0	0	0	2	2	1	0	0
Pinnotheres sp.	0	0	0	0	0	1	0	0	0
Pionosyllis gesae	P	10	0	0	0	0	0	0	0
Pisione remota	P	8	6	11	11	3	0	0	0
Pista sp.	P	0	0	0	0	1	0	0	0
Platyhelminthes	O	0	0	0	0	0	0	1	0
Pleuromeris tridentata	M	37	20	141	133	67	1	0	0
Podarke sp.	P	0	1	0	0	0	0	0	0
Podarkeopsis levifuscina	P	5	2	0	2	0	0	0	0
Podocerus sp.	A	0	0	0	2	0	0	0	0
Poecilochaetus johnsoni	P	0	0	1	0	0	0	0	0
Polinices duplicatus	M	0	0	0	0	0	0	1	0
Polinices sp.	M	0	0	0	1	0	0	0	1
Polychaeta	P	0	0	1	2	0	0	0	1
Polycirrus sp.	P	0	1	0	0	0	0	0	0
Polydora socialis	P	0	1	0	0	0	0	0	0
Polyodontes lupina	P	0	0	0	0	0	0	0	1
Prionospio cirrifera	P	7	5	0	12	1	0	0	15

Appendix 4 cont. Summary of benthic macrofauna in the Folly Reference and Borrow Areas. All values represent the total number of individuals in 10 grab samples. The higher taxa group of each species is indicated next to the species name ($\mathrm{M}=$ mollusc, $\mathrm{A}=$ amphipod, $\mathrm{P}=$ Polychaete, $\mathrm{O}=$ other taxa).

Species Name		Reference				Impact			
		Pre	Post	6 month Post	$\begin{aligned} & 12 \text { month } \\ & \text { Post } \end{aligned}$	Pre	Post	6 month Post	12 month Post
Prionospio cristata	P	0	2	10	38	0	0	0	0
Prionospio dayi	P	0	0	0	0	0	108	3	11
Prionospio sp.	P	0	3	19	1	0	5	49	3
Progoniada regularis	P	2	0	0	0	0	0	1	0
Protohaustorius deichmannae	A	0	0	2	0	17	8	29	4
Protohaustorius sp.	A	0	0	0	0	0	0	0	3
Pseudeurythoe ambigua	P	0	0	0	0	2	0	0	0
Pyura vittata	O	1	0	25	27	0	0	0	0
Rhepoxynius epistomus	A	1	14	2	8	7	27	3	2
Rhepoxynius hudsoni	A	0	0	0	0	0	0	0	8
Rhepoxynius sp.	A	0	3	0	0	0	0	0	6
Sabellaria floridensis	P	0	0	0	1	0	0	0	0
Sabellaria vulgaris	P	7	31	0	1	0	0	0	0
Schistomeringos sp.	P	0	1	0	0	0	0	0	0
Scolelepis sp.	P	0	0	1	0	0	0	0	0
Scolelepis squamata	P	0	0	0	0	0	0	3	5
Scolelepis texana	P	0	0	0	0	0	0	3	0
Scoletoma tenuis	P	0	5	0	0	0	0	0	0
Serpulidae	P	0	0	0	0	57	0	0	0
Sigalion arenicola	P	0	0	1	0	0	0	0	0
Sigalionidae	P	1	0	0	1	0	0	0	0
Sigambra bassi	P	0	0	0	0	1	0	0	0
Sigambra sp.	P	0	11	0	0	0	0	0	0
Sigambra tentaculata	P	0	0	0	0	0	0	2	7
Sigambra wassi	P	0	0	0	0	0	3	0	1
Sipuncula	0	0	4	5	0	1	0	1	0
Solen viridis	M	0	0	0	1	0	0	0	0
Solenidae	M	7	0	0	0	0	0	0	0
Sphaerosyllis glandulata	P	0	0	0	3	0	0	0	0
Sphaerosyllis longicauda	P	0	0	0	2	0	0	0	0
Sphaerosyllis sp.	P	0	0	3	0	0	0	0	0
Sphenia antillensis	M	12	2	0	0	4	0	0	0
Spiochaetopterus costarum oculatus	P	0	2	0	0	0	2	2	2
Spionidae	P	0	1	1	24	9	0	1	4
Spiophanes bombyx	P	24	6	31	2	544	11	945	10
Spiophanes missionensis	P	0	0	0	0	0	0	0	2
Spiophanes sp.	P	0	0	0	0	0	0	0	2
Spiophanes wigleyi	P	0	0	0	0	0	0	0	2
Spisula solidissima	M	0	0	2	0	0	0	0	0
Sthenelais boa	P	0	0	0	0	1	0	0	0
Streblospio benedicti	P	1	0	0	0	1	0	11	0
Streptosyllis sp.	P	0	3	0	0	0	0	1	0
Strigilla mirabilis	M	0	0	0	0	1	2	0	1
Syllidae	P	3	4	3	39	0	0	0	0

Appendix 4 cont. Summary of benthic macrofauna in the Folly Reference and Borrow Areas. All values represent the total number of individuals in 10 grab samples. The higher taxa group of each species is indicated next to the species name ($\mathrm{M}=$ mollusc, $\mathrm{A}=$ amphipod, $\mathrm{P}=$ Polychaete, $\mathrm{O}=$ other taxa).

Species Name	$\begin{aligned} & \text { Z } \\ & 0 \\ & \text { O} \\ & \text { U. } \\ & 0 \end{aligned}$	Reference				Impact			
		Pre	Post	6 month Post	12 month Post	Pre	Post	6 month Post	12 month Post
Syllis sp.	P	2	0	4	0	1	0	0	0
Synchelidium americanum	A	1	1	0	0	5	9	0	6
Synelmis ewingi	P	11	0	0	0	0	0	0	0
Synelmis sp.	P	0	0	1	20	0	0	0	0
Tanaidacea	0	4	5	2	0	0	0	0	0
Tellina agilis	M	0	0	20	0	5	10	110	1
Tellina alternata	M	0	0	2	0	0	0	0	0
Tellina sp.	M	1	0	1	8	0	6	0	19
Tellinidae	M	1	1	2	1	0	0	1	21
Terebra concava	M	0	0	0	0	1	0	0	0
Tharyx sp.	P	0	0	1	0	0	0	0	0
Tiron sp.	A	0	0	0	1	0	0	0	0
Tiron triocellatus	A	0	0	0	2	0	0	1	0
Tiron tropakis	A	6	0	8	1	12	0	3	0
Trachycardium muricatum	M	0	0	0	7	1	0	0	0
Travisia parva	P	37	0	110	6	10	0	0	0
Travisia sp.	P	8	1	0	0	1	0	0	0
Trypanosyllis sp.	P	0	1	0	1	0	0	0	0
Tubificidae	0	4	0	2	4	1	0	0	0
Tubificidae sp. b	0	0	0	0	0	1	0	0	0
Tubificoides brownae	0	0	0	8	0	0	0	0	0
Tubificoides wasselli	0	0	0	19	0	14	0	0	0
Turbellaria	0	1	0	0	0	0	0	0	0
Turbonilla sp.	M	0	1	0	0	1	0	1	0
Unciola serrata	A	0	0	1	0	12	0	2	0
Unciola sp.	A	0	0	0	0	2	0	0	0
Veneridae	M	0	0	0	284	0	0	0	0
Websterinereis tridentata	P	0	0	0	24	0	0	0	0
Xanthidae	0	0	0	0	3	3	0	0	0

Appendix 5.1. Abundance of benthic species collected at the Folly Borrow Area during Pre-nourishment sampling. Abundance values represent the number of
individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=$ amphipod, $M=$ mollusc, and $O=$ other taxa.

Appendix 5.1. Abundance of benthic species collected at the Folly Borrow Area during Pre-nourishment sampling. Abundance values represent the number of
individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=$ amphipod, $M=\operatorname{mollusc}$, and $O=o t h e r$

Appendix 5.1. Abundance of benthic species collected at the Folly Borrow Area during Pre-nourishment sampling. Abundance values represent the number of
individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $\mathrm{A}=\operatorname{amphipod}, \mathrm{M}=\mathrm{mollusc}$, and $\mathrm{O}=$ other taxa.

Appendix 5.1. Abundance of benthic species collected at the Folly Borrow Area during Pre-nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=$ amphipod, $M=$ mollusc, and $O=$ other
taxa.

	 $0000000000000000000-000000000000000$ $000000000000-000-0000 r 0000 r 00000000$ 00000000000000000000000000000000000 00000000000000000000000000000 0 00000 $00000000000000000-000000000000000$-0 $000-0000000000000000000000000000000$ $0000000000000000000000000000-000000$ 00000 000 0 0000 0000000000000000000000 	

of

Appendix 5.2. Abundance of benthic species collected at the Folly Borrow Area post nourishment (Post) sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete $, A=\operatorname{amphipod}, \mathrm{M}=$ mollusc, and $\mathrm{O}=$ other taxa.

SpeciesName	$\begin{aligned} & \text { तon } \\ & \text { O} \\ & \stackrel{0}{0} \\ & \text { O} \end{aligned}$	Iotal Abundance/(\# per grab $\left(0.04 \mathrm{~m}^{2}\right)$	\% Abundance	\% stations where present	FA02	FA03	FA04	FA06	FA07	FA08	FA10	FA11	FA13	FA14
Bathyporeia parkeri	A	2	0.45	20	0	0	0	0	0	1	0	0	0	1
Ensis directus	M	2	0.45	20	0	0	1	0	0	0	0	0	1	0
Glycera americana	P	2	0.45	10	0	0	0	0	0	0	0	2	0	0
Glycera sp.	P	2	0.45	20	0	0	1	0	0	1	0	0	0	0
Haustoriidae	A	2	0.45	20	1	0	0	0	0	1	0	0	0	0
Spiochaetopterus costarum oculatus	P	2	0.45	20	1	0	0	0	0	0	0	0	0	1
Strigilla mirabilis	M	2	0.45	10	0	0	0	0	2	0	0	0	0	0
Carinomella lactea	O	2	0.45	20	0	0	1	0	0	0	0	1	0	0
Decapoda	O	2	0.45	10	0	0	2	0	0	0	0	0	0	0
Lucifer faxoni	O	2	0.45	20	0	0	1	0	1	0	0	0	0	0
Acanthohaustorius millsi	A	1	0.23	10	0	0	0	0	0	0	0	0	0	1
Aglaophamus verrilli	P	1	0.23	10	0	0	0	0	1	0	0	0	0	0
Arabella mutans	P	1	0.23	10	0	0	0	0	0	0	0	1	0	0
Dorvilleidae	P	1	0.23	10	0	0	0	1	0	0	0	0	0	0
Drilonereis longa	P	1	0.23	10	0	0	1	0	0	0	0	0	0	0
Hydroides dianthus	P	1	0.23	10	0	1	0	0	0	0	0	0	0	0
Leitoscoloplos fragilis	P	1	0.23	10	0	0	0	0	0	1	0	0	0	0
Nereididae	P	1	0.23	10	0	0	1	0	0	0	0	0	0	0
Phyllodoce arenae	P	1	0.23	10	0	0	0	0	0	0	0	1	0	0
Pleuromeris tridentata	M	1	0.23	10	0	0	0	0	1	0	0	0	0	0
Acetes americanus	0	1	0.23	10	0	0	0	0	0	1	0	0	0	0
Americamysis bahia	0	1	0.23	10	0	0	0	0	0	0	0	1	0	0
Biffarius biformis	0	1	0.23	10	0	0	0	0	0	0	0	0	0	1
Cumacea	0	1	0.23	10	0	1	0	0	0	0	0	0	0	0
Edotia triloba	0	1	0.23	10	0	0	0	0	0	1	0	0	0	0
Leptochela serratorbita	0	1	0.23	10	0	0	0	0	1	0	0	0	0	0
Mysida	0	1	0.23	10	0	0	1	0	0	0	0	0	0	0
Ogyrides alphaerostris	0	1	0.23	10	0	0	0	0	0	0	0	0	0	1
Periclimenes sp.	0	1	0.23	10	0	0	1	0	0	0	0	0	0	0
Pinnixa sp.	0	1	0.23	10	0	0	0	0	0	0	1	0	0	0
Mean total abundance (\#/0.04m ${ }^{2}$)					11	2	49	83	76	49	1	62	55	55
Mean density (\#/m ${ }^{2}$)					275	50	1225	2075	1900	1225	25	1550	1375	1375
Species Richness (\#/0.04m ${ }^{\text {2 }}$)					6	2	17	12	22	23	1	17	18	20
Species Diversity					1.54	0.69	2.20	1.97	2.40	2.91	0.00	2.38	2.50	2.27
Evenness					0.86	1.00	0.78	0.79	0.78	0.93	N/A	0.84	0.86	0.76

Appendix 5.3. Abundance of benthic species collected at the Folly Borrow Area during 6 month post (6 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M$

Appendix 5.3. Abundance of benthic species collected at the Folly Borrow Area during 6 month post (6 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M$ $=$ mollusc, and $\mathrm{O}=$ other taxa.

Appendix 5.3. Abundance of benthic species collected at the Folly Borrow Area during 6 month post (6 mo Post) nourishment sampling. Abundance values
represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M$ $=$ mollusc, and $\mathrm{O}=$ other taxa.

	$000 r 00 r 00000000000000000$ $00000000000 r 000000000000$ $-00000000000000000 \sim 00000$ 000000000000000000000000 00000000000000000000 rooo 000000000000000000000000 000000000000000000000 roo 00000 roo00000 RO0000000ro 으으으으으으으으으으으으으으으으으 O 	

Appendix 5.4. Abundance of benthic species collected at the Folly Borrow Area during 12 month post (12 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=P o l y c h a e t e, ~ A=A m p h i p o d, ~ M$ $=$ Mollusc, and $O=$ Other taxa.

Appendix 5.4. Abundance of benthic species collected at the Folly Borrow Area during 12 month post (12 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=P o l y c h a e t e, A=A m p h i p o d, ~ M$ $=$ Mollusc, and $\mathrm{O}=$ Other taxa.

Appendix 5.4. Abundance of benthic species collected at the Folly Borrow Area during 12 month post (12mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=P o l y c h a e t e, A=A m p h i p o d, M$ = Mollusc, and O = Other taxa.

SpeciesName		$\begin{gathered} \text { Total } \\ \text { Abundance (\# } \\ 10.04 \mathrm{~m}^{2} \text {) } \end{gathered}$	Percent Abundance	Percent of Stations Where Present	FA02	FA03	FA04	FA06	FA07	FA08	FA10	FA11	FA13	FA14
Ophelina cylindricaudata	P	1	0.22	10	0	0	0	0	0	0	0	1	0	0
Ophelina sp.	P	1	0.22	10	0	0	0	0	0	0	0	0	0	1
Owenia fusiformis	P	1	0.22	10	0	0	0	0	0	1	0	0	0	0
ParAhinome sp.	P	1	0.22	10	0	0	0	0	0	0	0	1	0	0
Phoxocephalidae	A	1	0.22	10	0	0	0	1	0	0	0	0	0	0
Phyllodoce groenlandica	P	1	0.22	10	0	0	0	0	0	0	0	1	0	0
Polinices sp.	M	1	0.22	10	0	0	0	0	0	0	0	0	0	1
Polychaeta	P	1	0.22	10	0	0	1	0	0	0	0	0	0	0
Podontes lupina	P	1	0.22	10	1	0	0	0	0	0	0	0	0	0
Sigambra wassi	P	1	0.22	10	1	0	0	0	0	0	0	0	0	0
Strigilla mirabilis	M	1	0.22	10	0	0	0	0	0	0	0	0	0	1
Tellina agilis	M	1	0.22	10	0	1	0	0	0	0	0	0	0	0
Leptochela serratorbita	0	1	0.22	10	0	0	0	0	0	1	0	0	0	0
Ogyrides alphaerostris	0	1	0.22	10	0	0	0	0	1	0	0	0	0	0
Mean total abundance (\#/0.04m ${ }^{\text {2 }}$)					14	14	37	78	46	85	3	90	21	71
Mean density (\#/m²)					350	350	925	1950	1150	2125	75	2250	525	1775
Species Richness (\#/0.04m ${ }^{\text {2 }}$)					6	6	16	21	20	27	2	11	11	21
Species Diversity					1.65	1.65	2.38	2.65	2.82	2.94	0.64	1.38	2.27	2.60
Evenness					0.92	0.92	0.86	0.87	0.94	0.89	0.92	0.58	0.95	0.86

Appendix 5.5. Abundance of benthic species collected at the Folly Reference Area during pre (Pre) nourishment sampling. Abundance values represent the
number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=\operatorname{amphipod}, \mathrm{M}=\mathrm{mollusc}$,

Appendix 5.5. Abundance of benthic species collected at the Folly Reference Area during pre (Pre) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M=m o l l u s c$,

Appendix 5.5. Abundance of benthic species collected at the Folly Reference Area during pre (Pre) nourishment sampling. Abundance values represent the
number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M=m o l l u s c$,

Appendix 5.5. Abundance of benthic species collected at the Folly Reference Area during pre (Pre) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M=m o l l u s c$,

SpeciesName		Total Abundance (\# $10.04 \mathrm{~m}^{2}$)	Percent Abundance	Percent of Stations Where Present	FR01	FR02	FR03	FR04	FR05	FR06	FR07	FR08	FR09	FR10
Euceramus praelongus	O	1	0.07	10	0	0	0	0	0	0	0	1	0	0
Edotia triloba	O	1	0.07	10	0	0	0	1	0	0	0	0	0	0
Edotia sp.	P	1	0.07	10	0	0	0	0	0	0	1	0	0	0
Dorvilleidae	P	1	0.07	10	1	0	0	0	0	0	0	0	0	0
Cumacea	O	1	0.07	10	0	0	0	0	0	0	0	0	0	1
Corophiidae	A	1	0.07	10	0	0	0	0	0	0	0	0	1	0
Corbula contracta	M	1	0.07	10	0	0	0	1	0	0	0	0	0	0
Chione cancellata	M	1	0.07	10	0	0	0	0	0	1	0	0	0	0
Carinomella lactea	O	1	0.07	10	0	1	0	0	0	0	0	0	0	0
Brania wellfleetensis	P	1	0.07	10	0	0	0	0	0	0	1	0	0	0
Armandia maculata	P	1	0.07	10	0	0	0	1	0	0	0	0	0	0
Arcidae	M	1	0.07	10	0	0	0	0	0	0	0	0	1	0
Mean total abundance (\#/0.04m ${ }^{\text {2 }}$)					133	220	129	48	118	70	217	302	99	108
Mean density (\#/m ${ }^{2}$)					3325	5500	3225	1200	2950	1750	5425	7550	2475	2700
Species Richness (\#/0.04m ${ }^{\text {2 }}$)					22	32	21	20	28	17	28	40	20	18
Species Diversity					2.30	2.70	2.50	2.67	2.81	1.96	2.43	3.10	2.35	2.16
Evenness					0.74	0.78	0.82	0.89	0.84	0.69	0.73	0.84	0.78	0.75

Appendix 5.6. Abundance of benthic species collected at the Folly Reference Area during immediate post (Post) nourishment sampling. Abundance values
represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=$ amphipod, $M=$ mollusc, and $\mathrm{O}=$ other taxa.

Appendix 5.6. Abundance of benthic species collected at the Folly Reference Area during immediate post (Post) nourishment sampling. Abundance values
represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M=$ mollusc, and $\mathrm{O}=$ other taxa.

Appendix 5.6. Abundance of benthic species collected at the Folly Reference Area during immediate post (Post) nourishment sampling. Abundance values
represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $\mathrm{P}=$ polychaete, $\mathrm{A}=\mathrm{amphipod}, \mathrm{M}=$ mollusc, and $\mathrm{O}=$ other taxa.

	$00 N 000000000000000$ ro000 000000 $000 \sim 00000000000 \sim \leftarrow 00000000 \sim 00$ r $0 N 0000000$ RO000 RO0000000000000 $000 r 000000000000000 \sim r 000 \sim 0000$ $00000 r 00000000000000000000000$ $00000000000000000-00000000000$ $0000000000 r 000000000000000000$ $000000-0000000000000000000000$ NOOO ROORFOORFOOOOOOOORFOOOORO 0000000000000 ro00000000000-00 	Mean total abundance ($\left(\# / 0.04 \mathrm{~m}^{2}\right)$ Mean density $\left(\# / \mathrm{m}^{2}\right)$ Species Richness (\#/0.04m $\left.{ }^{2}\right)$ Species Diversity Evenness

Appendix 5.7. Abundance of benthic species collected at the Folly Reference Area during 6 month post (6 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M$ $=$ mollusc, and $\mathrm{O}=$ other taxa.

Appendix 5.7. Abundance of benthic species collected at the Folly Reference Area during 6 month post (6 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M$ $=$ mollusc, and $\mathrm{O}=$ other taxa.

Appendix 5.7. Abundance of benthic species collected at the Folly Reference Area during 6 month post (6 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M$ $=$ mollusc, and $\mathrm{O}=$ other taxa.

Appendix 5.7. Abundance of benthic species collected at the Folly Reference Area during 6 month post (6 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M$ $=$ mollusc, and $\mathrm{O}=$ other taxa.

Appendix 5.8. Abundance of benthic species collected at the Folly Reference Area during 12 month post (12 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M$ $=$ mollusc, and $\mathrm{O}=$ other taxa.

Appendix 5.8. Abundance of benthic species collected at the Folly Reference Area during 12 month post (12 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, ~ M$ $=$ mollusc, and $\mathrm{O}=$ other taxa.

Appendix 5.8. Abundance of benthic species collected at the Folly Reference Area during 12 month post (12 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $\mathrm{P}=\mathrm{polychaete}, \mathrm{A}=\mathrm{amphipod}, \mathrm{M}$

Appendix 5.8. Abundance of benthic species collected at the Folly Reference Area during 12 month post (12 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $P=$ polychaete, $A=a m p h i p o d, M$ = mollusc, and $\mathrm{O}=$ other taxa.

Appendix 5.8. Abundance of benthic species collected at the Folly Reference Area during 12 month post (12 mo Post) nourishment sampling. Abundance values represent the number of individuals per grab $\left(0.04 \mathrm{~m}^{2}\right)$. Density represents the number of individuals $/ \mathrm{m}^{2}$. Higher taxa codes are $\mathrm{P}=$ polychaete, $\mathrm{A}=\mathrm{amphipod}, \mathrm{M}$ $=$ mollusc, and $\mathrm{O}=$ other taxa.

SpeciesName	$\begin{array}{r} \text { To } \\ 0 \\ 0.0 \\ 0 \\ \hline 0 \end{array}$	Total Abundance (\# $10.04 \mathrm{~m}^{2}$)	Percent Abundance	Percent of Stations Where Present	FR01	FR02	FR03	FR04	FR05	FR06	FR07	FR08	FR09	FR10
Tellinidae	M	1	0.03	10	0	0	0	0	0	0	1	0	0	0
Tiron sp.	A	1	0.03	10	0	0	0	0	0	0	1	0	0	0
Tiron tropakis	A	1	0.03	10	0	1	0	0	0	0	0	0	0	0
Trypanosyllis sp.	P	1	0.03	10	0	0	0	0	0	1	0	0	0	0
Amphiuridae	0	1	0.03	10	0	1	0	0	0	0	0	0	0	0
Cyclaspis pustulata	0	1	0.03	10	0	1	0	0	0	0	0	0	0	0
Discoporella umbellata	0	1	0.03	10	0	0	0	0	0	1	0	0	0	0
Dissodactylus mellitae	0	1	0.03	10	0	0	0	1	0	0	0	0	0	0
Leptochela serratorbita	0	1	0.03	10	0	1	0	0	0	0	0	0	0	0
Mysida	0	1	0.03	10	0	0	0	0	0	1	0	0	0	0
Ostracoda	0	1	0.03	10	0	1	0	0	0	0	0	0	0	0
Pagurus sp.	0	1	0.03	10	0	0	0	0	0	0	0	0	0	1
Pananthura formosa	0	1	0.03	10	0	0	0	0	0	0	1	0	0	0
Mean total abundance (\#/0.04m ${ }^{\text {2 }}$)					296	205	615	162	375	562	876	105	327	280
Mean density (\#/m ${ }^{2}$)					7400	5125	15375	4050	9375	14050	21900	2625	8175	7000
Species Richness (\#/0.04m ${ }^{2}$)					26	36	43	22	35	37	41	14	27	29
Species Diversity					2.11	2.16	2.30	2.11	2.82	2.11	2.25	1.57	1.93	2.18
Evenness					0.65	0.60	0.61	0.68	0.79	0.58	0.61	0.60	0.59	0.65

Appendix 6. Summary of Ocypode quadrata and Callichirus major counted at the Folly Beach reference and nourished areas. All values represent the total number of individuals counted on a transect.

Time Frame	Area	Site	Transect	Number of 5 m segments	Number of Ocypode quadrata	Number of Callichirus major
Pre	Nourished	FN01	1	16	1	0
Pre	Nourished	FN01	2	17	3	0
Pre	Nourished	FN01	3	17	1	0
Pre	Nourished	FN01	4	17	3	0
Pre	Nourished	FN01	5	17	4	0
Pre	Nourished	FN02	1	17	2	0
Pre	Nourished	FN02	2	17	1	0
Pre	Nourished	FN02	3	17	3	5
Pre	Nourished	FN02	4	17	7	5
Pre	Nourished	FN02	5	17	3	8
Pre	Nourished	FN03	1	18	2	8
Pre	Nourished	FN03	2	18	0	3
Pre	Nourished	FN03	3	18	1	0
Pre	Nourished	FN03	4	18	0	3
Pre	Nourished	FN03	5	18	3	1
Pre	Reference	FC01	1	16	2	5
Pre	Reference	FC01	2	16	5	1
Pre	Reference	FC01	3	15	2	8
Pre	Reference	FC01	4	17	5	2
Pre	Reference	FC01	5	16	4	3
Pre	Reference	FC02	1	16	6	0
Pre	Reference	FC02	2	16	3	1
Pre	Reference	FC02	3	16	4	2
Pre	Reference	FC02	4	16	3	0
Pre	Reference	FC02	5	15	7	0
Pre	Reference	FC03	1	16	9	0
Pre	Reference	FC03	2	17	1	0
Pre	Reference	FC03	3	18	1	1
Pre	Reference	FC03	4	18	9	0
Pre	Reference	FC03	5	18	1	1
Post	Nourished	FN02	1	21	8	27
Post	Nourished	FN02	2	22	4	16
Post	Nourished	FN02	3	21	17	0
Post	Nourished	FN02	4	22	1	30
Post	Nourished	FN02	5	22	5	53
Post	Nourished	FN03	1	25	1	113
Post	Nourished	FN03	2	25	4	64
Post	Nourished	FN03	3	23	9	16
Post	Nourished	FN03	4	22	7	14
Post	Nourished	FN03	5	22	4	10
Post	Reference	FC01	1	13	10	0
Post	Reference	FC01	2	13	9	0
Post	Reference	FC01	3	13	7	0
Post	Reference	FC01	4	13	11	0
Post	Reference	FC01	5	13	8	0
Post	Reference	FC02	1	13	9	0
Post	Reference	FC02	2	13	12	0
Post	Reference	FC02	3	13	10	0
Post	Reference	FC02	4	13	9	0
Post	Reference	FC02	5	13	9	0
Post	Reference	FC03	1	16	18	0
Post	Reference	FC03	2	15	17	0
Post	Reference	FC03	3	15	15	0

Appendix 6 cont. Summary of Ocypode quadrata and Callichirus major counted at the Folly Beach reference and nourished areas. All values represent the total number of individuals counted on a transect.

| Time | | | | Number of |
| :---: | :---: | :---: | :---: | :---: | :---: | | Number of |
| :---: |
| Frame |\quad Callichirus

Appendix 6 cont. Summary of Ocypode quadrata and Callichirus major counted at the Folly Beach reference and nourished areas. All values represent the total number of individuals counted on a transect.

Time Frame	Area	Site	Transect	Number of 5 m segments	Number of Ocypode quadrata	Number of Callichirus major
6 mo Post	Reference	FC02	2	12	7	0
6 mo Post	Reference	FC02	3	12	11	0
6 mo Post	Reference	FC02	4	12	14	0
6 mo Post	Reference	FC02	5	12	6	0
6 mo Post	Reference	FC03	1	15	8	0
6 mo Post	Reference	FC03	2	16	6	1
6 mo Post	Reference	FC03	3	16	0	0
6 mo Post	Reference	FC03	4	15	2	1
6 mo Post	Reference	FC03	5	16	3	0
12mo Post	Nourished	FN01	1	19	4	0
12mo Post	Nourished	FN01	2	19	0	0
12mo Post	Nourished	FN01	3	19	3	0
12mo Post	Nourished	FN01	4	18	4	0
12mo Post	Nourished	FN01	5	18	3	0
12mo Post	Nourished	FN02	1	17	6	0
12mo Post	Nourished	FN02	2	18	8	0
12mo Post	Nourished	FN02	3	18	9	0
12mo Post	Nourished	FN02	4	19	6	0
12mo Post	Nourished	FN02	5	19	8	1
12mo Post	Nourished	FN03	1	17	10	2
12mo Post	Nourished	FN03	2	17	10	2
12mo Post	Nourished	FN03	3	17	14	0
12mo Post	Nourished	FN03	4	17	15	0
12mo Post	Nourished	FN03	5	17	11	5
12mo Post	Reference	FC01	1	15	28	4
12mo Post	Reference	FC01	2	15	30	5
12mo Post	Reference	FC01	3	16	21	12
12mo Post	Reference	FC01	4	16	27	4
12mo Post	Reference	FC01	5	15	21	4
12mo Post	Reference	FC02	1	17	16	10
12mo Post	Reference	FC02	2	16	14	18
12mo Post	Reference	FC02	3	17	13	30
12mo Post	Reference	FC02	4	17	15	48
12mo Post	Reference	FC02	5	17	37	38
12mo Post	Reference	FC03	1	21	29	142
12mo Post	Reference	FC03	2	20	16	146
12mo Post	Reference	FC03	3	20	18	46
12mo Post	Reference	FC03	4	19	16	31
12mo Post	Reference	FC03	5	19	23	80

