

BOTTOM FISHES OF SOUTH CAROLINA ESTUARIES -

RELATIVE ABUNDANCE, SEASONAL DISTRIBUTION, AND LENGTH-FREQUENCY RELATIONSHIPS ${ }^{1}$

M. H. Shealy, Jr., ${ }^{2}$ John V. Miglarese, ${ }^{2}$ and Edwin B. Joseph ${ }^{3}$

Marine Resources Research Institute, ${ }^{2}$ Marine Resources Division, 3 South Carolina Wildlife and Marine Resources Department, Charleston, South Carolina 29422

Technical Report Number 6

Page
I. INTRODUCTION 1
II. METHODS AND MATRRIALS 3
A. Sampling Iesigr 3
B. Trawl Techniques 3

1. Trawl operations 3
2. Description of trawl 7
3. Catch processing 9
C. Summarization of Trawl Data 11
4. Total catch 11
5. Total length, temperature, and salinity ranges 11
6. Length-frequency relationshifi 11
7. Relative abundance and seasonal distribution 12
D. Hydrographic Analyses 13
III. RESULTS AND CONCLUSZONS 14
A. Total Catch Composition 14
B. Description of Catch (Most Common Species) 22
8. Stellifer lanceolatus (Star Drum) 22
9. Anchoa mitchilli (Bay Anchovy) 47
10. Micropogon undulatus (Atlantic Croaker) 54
11. Leiostomus xanthurus (Spot) 65
12. Cynoscion regalis (Weakfish) 72
13. Bairdiella chrysura (Silver Perch) 82
?. Ictalurus catus (White Catfish) 94
14. Urophycis regius (Spotted Hake) 102
15. Brevoortia tyrarnus (Atlantic Menhaden) 109
16. Chloroscombrus chrysurus (Atlantic Bumper) 116
17. Alosa aestivalis (Blueback Herring) 119
18. Mrinectes maculatus (Hogchoker) 123
19. Symphurus plagiusa (Blackcheek Tonguefish) 127
20. Dorosoma petenense (Threadfin Shad) 132
21. Anchoa hepsetus (Striped Anchovy) 134
22. Opisthonema oglinum (Atlantic Thread Herring) 139
23. Trichiurus lepturus (Atlantic Cutlassfish) 141
24. Peprilus alepidotus (Harvestfish) 146
25. Arius felis (Sea Catfish) 148
26. Ictalurus punctatus (Channel Catfish). 154
27. Opsanus tau (Oyster Toadfish). 156
28. Larimus fasciatus (Banded Drum) 162
29. Menticirrhus americanus (Southern Kingfish) 164
IV. DISCUSSION 169
V. SUMMARY 181
VI. LITERATURE CITED 185

LIST OF FIGURES

Figure Page1. Stations occupied in South Carolina estuaries duringthe bottom trawl study2
2. The R / V ANITA, a $16-m$ ($52-f t$) shallow-draft research vessel; preparing to set a $6-m(20-f t)$ semibalioon otter trawl on one of the stations in South Carolina estuaries occupied throughout the study8
3. Scientific personnel of the South Carolina Wildiffe and Marine Resources Department processing a trawl catch resulting from a 20 minute bottom tow. Such measurements provided quantitative information on length-frequencies, relative abundance, and seasonal distribution for 88 fish species frequenting South Caroline estuaries10

1. Schedule of Estuarine Survey cruises in South Carolina during the l2-month cycle from February, 1973 through January, 1974 4
2. Locations of 17 Estuarine Survey stations, Intensive Phase, occupied monthly in the North and South Edisto, and Cooper Rivers, South Carolina, during the l-month annual cycle from February, 1973 through January, 1974 5
3. Locations of 16 Estuarine Survey stations, Extensive Phase, occupied quarterly in a number of estuaries throughout the South Carolina cosstal zone during the 12 -month annual cycle from February, 1973 through January, 1974 6
4. Systematic listing by orders and families for the 88 fish species collected by bottom trawl in South Carolina estuaries during the 12-month period from February, 1973 through Januery, 1974 15
5. Species occurrence by locality sumarized from bottom trawl catches in South Carolina estuaries during the l2-month period from February, 1973 through January, 1974 19
6. Numbers of species and families by order and their relative contributions (by numbers and weights) to bottom trawl catches in South Carolina estuaries during the 22 -month period from February, 1973 through January, 1974 23
7. Total numbers, total weights, rankings in order of abundance by number and weight, and percentage of total catch represented by 88 fish species captured by bottom trawl in South Carolina estuaries from February, 1973 through January, 1974 26
8. Total length ranges, bottom salinity and temperature ranges, and primary locations at which 88 fish species were captured by bottom trawl in South Caroline estuaries from February, 1973 through January, 1974 30
9. Length-frequency relationship for Stellifer lanceolatus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 34
10. Total numbers, total weights, rankings in order of abundance by number and weight, and percentage of total catch represented by 62 fish species captured by bottom trawl in the North Edisto estuary, South Carolina, from February, 1973 through January, 1974 36
11. Numerical abundance of Stellifer lanceolatus collected monthly by bottom trewl at eight stations in the North Edisto estuary, South Carolina, from February, 2973 through January, 1974 38
12. Total numbers, total weights, rankings in order of abundance by number and weight, and percentage of total catch represented by 47 fish species captured by bottom trawl in the South Edisto estuary, South Carolina, from February, 1973 through January, 1974 39
13. Numerical abundance of Stellifer lanceolatus collected monthly by bottom trawl at four stations in the South Edisto estuary, South Carolina, from February, 1973 through January, 1974 41
14. Total numbers, total weights, rankings in order of abundance by number and weight, and percentage of total catch represented by 57 fish species captured by bottom trawl in the Cooper River estuary, South Carolina, from Februery, 1973 through January, 1974 43
15. Numerical abundance of Stellifer lanceolatus collected monthly by bottom traw1 at five stations in the Cooper River estuary, South Carolina, from February, 1973 through January, 1974 45
16. Numerical abundance of Stellifer lanceolatus collected quarterly by bottom trawl at 16 stations across the South Carolina coastal zone from February, 1973 through January, 1974 46
17. Length-frequency relationship for Anchoa mitchilli collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974. 48
18. Numerical abundance of Anchoa mitchilli collected monthlyby bottom trawl at eight stations in the North Edistoestuary, South Carolina, from February, 1973 throughJanuary, 197450
19. Numerical abundance of Anchoa mitchilli collectedmonthly by bottom trawl at four stations in the SouthEdisto estuary, South Carolina, from February, 1973 throughJanuary, 197452
20. Numerical abundance of Anchoa mitchilli collected monthly by bottom trawl at five stations in the Cooper River estuary, South Carolina, from February, 1973 through Jenuary, 197453
21. Numerical abundance of Anchoa mitchilli collected quarterly by bottom trawl at 16 stations across the South Carolina coastal zone from February, 1973 through January, 1974 55
22. Length-frequency relationship for Micropogon undulatus collected by bottom trawl in South Carolina estueries (all stations combined) from February, 1973 through Jenuary, 1974 56
23. Numerical abundance of Microfogon undulatus collected monthly by bottom trawl at eight stations in the North Edisto estuary, South Caroline, from February, 1973 through January, 1974 60
24. Numerical abundance of Micropogon undulatus collected monthly by bottom trawl at four stations in the South Edisto estuary, South Carolina, from February, 1973 through January, 1974 61
25. Numerical abundence of Micropogon undulatus collected monthly by bottom trawl at five stations in the Cooper River estuary, South Carolina, from February, 1973 through January, 1974 63
26. Numericel abundance of Micropogon undulatus collected quarterly by bottom trawl at 16 stations across the South Carolina coastal zone from February, 1973 through January, 1974 64
27. Length-frequency relationship for Leiostomus xanthurus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 66
28. Numerical abundance of Leiostomus xanthurus collected monthly by bottom trawl at eight stations in the North Edisto estuary, South Carolina, from February, 1973 through January, 1974 70
29. Numerical abundance of Leiostomus xanthurus collected monthiy by bottom trawl at four stations in the South Edisto estuary, South Carolina, from February, 1973 through January, 1974 71
30. Numerical abundance of Leiostomus xanthurus collected monthly by bottom trawl at five stations in the Cooper River estuary, South Carolina, from February, 1973 through January, 1974 73
31. Numerical abundance of Leiostomus xanthurus collected quarterly by bottom trawl at 16 stations across the South Carolina coastal zone from February, 1973 through January, 1974 74
32. Length-frequency relationship for Cynoscion regalis collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974. 76
33. Numerical abundance of Cynoscion regalis collected monthly by bottom trawl at eight stations in the North Edisto estuary, South Carolina, from February, 1973 through Jenuary, 1974 80
34. Numerical abundance of Cynoscion regalis collected monthly by bottom trawl at four stations in the South Edisto estuary, South Carolina, from February, 1973 through January, 1974 81
35. Numerical abundance of Cymoscion regalis collected monthly by bottom trawl at five stations in the Cooper River estuary, South Carolina, from February, 1973 through January, 1974 83
36. Numerical abundance of Cynoscion regalis collected quarterly by bottom trawl at 16 stations across the South Carolina coastal zone from February, 1973 through January, 1974 84
37. Length-frequency relationship for Bairdiella chrysura collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 85
38. Numerical abundance of Bairdiella chrysura collected monthly by bottom trawl at eight stations in the North Edisto estuary, South Carolina, from February, 1973 through Jenuery, 1974 89
39. Numerical abundance of Bairdiella chrysure collected monthly by bottom trawl at four stations in the South Edisto estuary, South Carolina, from February, 1973 through January, 1974 91
40. Numerical abundance of Bairdiella chrysura collected monthly by bottom trawl at five stations in the Cooper River estuary, South Carolina, from February, 1973 through January, 1974 92
41. Numerical abundance of Bairdiella chrysura collected quarterly by bottom trawl at 16 stations across the South Caroline coastal zone from February, 1973 through January, 1974 93
Table
42. Length-frequency relationship for Ictalurus catus collected by bottom trawl in South Carolina eatuaries (all stations combined) from February, 1973 through Januery, 1974 95
43. Numerical abundance of Ictalurus catus collected monthly by bottom trawl at eight stations in the North Edisto estuary, South Carolina, from February, 1973 through January, 1974 99
44. Numerical abundance of Ictalurus catus collected monthly by bottom trawl at four stations in the South Edisto estuary, South Carolina, from February, 1973 through January, 1974 100
45. Numerical abundance of Ictalurus catus collected monthly by bottom trawl at five stations in the Cooper River estuary, South Carolina, from February, 1973 to January, 1974 101
46. Numerical abundance of Ictalurus catus collected quarterly by bottom trawl at 16 stations across the South Carolina coastal zone from February, 1973 through January, 1974 103
47. Length-frequency relationship for Urophycis regius collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 104
48. Numerical abundance of Urophycis regius collected monthly by bottom trawl at eight stations in the North Edisto estuary, South Carolina, from February, 1973 through Jenuary, 1974 107
49. Numerical abundance of Urophycis regius collected monthly by bottom trawl at four stations in the South Edisto estuary, South Carolina, from February, 1973 through January, 1974 108
50. Numerical abundance of Urophycis regius collected monthly by bottom trawl at five stations in the Cooper River estuary, South Carolina, from February, 1973 through January, 1974 110
51. Numerical abundance of Urophycis regius collected quarterly by bottom trawl at 16 stations across the South Carolina coastal zone from February, 1973 through January, 1974 111
52. Length-frrequency relationship for Brevoortia tyrannus collected by bottom trawi in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 112
53. Numerical abundance of Brevoortia tyrannus collected
by bottom trawl monthly in the North Edisto, South
Edisto, and Cooper Rivers and quarterly in other
South Carolina coastal regions from February, 1973
through January, 1974 115
54. Length-frequency relationship for Chloroscombrus chrysurus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through Jenuary, 1974 117
55. Numerical abundance of Chloroscombrus chrysurus collected by bottom trawl monthly in the North Edisto, South Edisto, and Cooper Rivers and quarterly in other South Carolina coastal regions from February, 1973 through January, 1974 118
56. Length-frequency relationship for Alosa aestivalis collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 121
57. Numerical abundance of Alosa aestivalis collected by bottom trawl monthly in the North Edisto, South Edisto and Cooper Rivers and quarterly in other South Carolina coastal regions from February, 1973 through January, 1974 122
58. Length-frequency relationship for Trinectes meculatus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 124
59. Numerical abundance of Trinectes maculatus collected by bottom trawl monthly in the North Edisto, South Edisto, and Cooper Rivers and quarterly in other South Carolina coastal regions from February, 1973 through January, 1974 126
60. Length-frequency relationship for Symphurus plagiusa collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 128
61. Numerical abundance of Symphurus plasjusa collected by bottom trawl monthly in the North Edisto, South Edista, and Cooper Rivers and quarterly in other South Carolina coastal regions from February, 1973 through January, 1974 131
62. Length-frequency relationship for Dorosoma petenense collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 133
63. Numerical abundance of Dorosoma petenense collected by bottom trawl monthly in the North Eaisto, South Edisto, and Cooper Rivers and quarterly in other South Carolina cosstal regions from February, 1973 through January, 1974135
64. Length-frequency relationship for Anchoa hepsetus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 137
65. Numerical abundance of Anchoa hepsetus collected by bottom trawl monthly in the North Edisto, South Edisto, and Cooper Rivers and quarterly in other South Carolina coastal regions from February, 1973 through January, 1974 138
66. Length-frequency relationship for Opisthonemg oglinum collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 140
67. Numerical abundance of Opisthonema oglinum collected by bottom trawl monthly in the North Edisto, South Edisto, and Cooper Rivers and quarterly in other South Carolina coastal regions from February, 1973 through Jenuary, 1974 142
68. Length-frequency relationship for Trichiurus lepturus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 144
69. Numerical abundance of Trichiurus lepturus collected by bottom trawl monthly in the North Edisto, South Edisto, and Cooper Rivers and quarterly in other South Carolina coastal regions from February, 1973 through January, 1974 145
70. Length-frequency relationship for Peprilus alepidotus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 147
71. Numerical abundance of Peprilus alepidotus collected by bottom trawl monthly in the North Edisto, South Edisto, and Cooper Rivers and quarterly in other South Carolina coastal regions from February, 1973 through January, 1974 149
72. Length-frequency relationship for Arius felis collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974 151
73. Numerical abundance of Arius $\frac{\text { felis }}{\text { collected by bottom }}$
trawl monthly in the North Edisto, South Edisto, and
Cooper Rivers and quarterly in other South Carolina
coastal regions from February, 1973 through
January, $1974 \ldots \ldots . ~$ 53
74. Length-frequency relationship for Ictalurus punctatus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through Jenuary, 1974
75. Numerical abundance of Ictalurus punctatus collected
by bottom trawl monthly in the North Edisto, South
Edisto, and Cooper Rivers and quarterly in other South
Carolina coastal regions from February, 1973 through
January, 1974
76. Length-frequency relationship for Opsenus tau collected
by bottom trawl in South Carolina estuaries (all stations
combined) from February, 1973 through Jenuary, 1974 159
77. Numerical abundance of Opsanus tau collected by bottom
trawl monthly in the North Edisto, South Edisto, and
Cooper Rivers and quarterly in other South Carolina
coastal regions from February, 1973 through January,
1974
78. Length-frequency relationship for Larimus fasciatus collected by bottom trawl in South Cerolina estuarfes (all staticns combined) from February, 1973 through January, 1974
79. Numerical abundance of Larimus fasciatus collected by
bottom trawl monthly in the North Edisto, South Edisto,
and Cooper Rivers and quarterly in other South Carolina
coastal regions from February, 1973 through January,
1974
80. Length-frequency relationship for Menticirrhus americanus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974
81. Numerical abundance of Menticirrhus americanus collected by bottom trawl monthly in the North Edisto, South Edista, and Cooper Rivers and quarterly in other South Carolina coastal regions from February, 1973 through January, 1974

ACKNOWLEDGMENTS

Victor G. Burrell, Jr., Paul A. Sandifer, Peter J. Eidiridge, Charles M. Bearden, and Martin A. Roessler provided us with useful advice during this study. William D. Anderson and Frederick H. Berry verified a number of species Identifications. Thomas D. Mathews provided salinity analyses of water samples. Nickie Jenkins assisted with computer processing of data. We wish to thank Paul A. Sandifer, Victor G. Burrell, Jr., Charles M. Bearden, and David M. Cupka for their reviews of the manuscript. Dale Calder, Rick Richter, Craig Reeves, Sally Lumpkin, John Guilds, Emily Jenkins, Cindy Floyd, Ann Leonard, Billy Boothe, Dan Lesesne, Bruce Stender, Charles Farmer, Charlie Boardman, A. S. Lachicotte, John LaRoche, Lindsay Oswald, Vincent Taylor, and James Yarnell assisted in various ways. Sandra C. Dukes, Evelyn Myatt, Margaret Pridgen, and Pete Laurie assisted with manuscript preparation. Grants from the Coastal Plains Regional Commission, Contract Number 10340031, made much of this research possible.

In February, 1973 the South Carolina Wildife and Marine Resources Department initiated a major statewide estuarine research program. This ongoing project, "An Environmental Base Line Study of South Carolina Estuaries," is primarily an effort of the Marine Resources Division's Marine Resources Research Institute (MRRI), with assistance from the Division's Office of Conservation and Management (OCM). The broad objectives of this program are to determine the basic biological, chemical, and physical characteristics of the major estuaries of South Carolina, the seasonal changes in these characteristics, and their interactions over a several-year period.

During the first year of the program, extensive meteorological, hydrographic, nektonic, planktonic, and benthic studies were conducted during all seasons of the year at 33 selected stations (Figure 1).

This report presents data on relative abundance, seasonal distribution, and length-frequency relationships for 88 fish species captured by bottom trawl in South Carolina estuaries during the 12 -month period from February, 1973 through January, 1974.

FIGURE 1.
STATIONS OCCUPIED IN SOUTH CAROLINA ESTUARIES DURING THE BOTTOM TRAWL STUDY.

Sampling Design

Thirty-three sampling sites were selected in the South Carolina coastal zone (Figure 1) and divided into two categories, Intensive Phase stations or Extensive Phase stations. A schedule of cruises conducted to stations in each phase is given in Table 1.

The Intensive Phase consisted of a concentration of 17 stations, eight in the North Edisto, four in the South Edisto, and five in the Cooper River, each of which was occupied monthly throughout the year. Locations, mean depths, tidal ranges, bottom selinity and temperature ranges, and bottom types for these stations are given in Table 2.

The Extensive Phase included 16 additional stations over much of the remaining South Carolina coastal zone. These locetions were visited quarterly and encompassed a wide range of geographic locations, depths, and bottom types. Locations, mean depths, tidal ranges, bottom salinity and temperature ranges, and bottom types for these stations are given in Table 3. Included in this quarterly phase were stations in South Santee River; Winyah and Bull Bays; Price, Nowell, and Inlet Creeks; Charleston Harbor; Ashley and Stono Rivers; Rock Creek; Ashepoo River; Whale Branch; Port Royal Sound; Colleton River; and Calibogue Sound.

Trawl Techniques

Trawl operations. All bottom trawling was accomplished utilizing the South Carolina Wildife and Marine Resources Department's R/V ANITA, a $16-m$ ($52-f t$) shallow-draft research vessel rigged as a stern trawler

Table 1. Schedule of tstuarine Survey cruises in South Carolina during the 12 -month cycle from February, 1973 through January, 1974.

	Dete	Cruise
1973	February	North and South Edisto, Cooper Rivers (Intensive Phase)
	March	North and South tdisto, Cooper Rivers (Intensive Phase)
	April	*Entire State (Intensive and Extensive Phases)
	May	North and South Edisto, Cooper Rivers (Intensive Fhase)
	June	North and South Edisto, Cooper Rivers (Intensive Phase)
	July	*Entire State (Intensive and Extensive Phases)
	August	North and South edisto, Cooper Rivers (Intensive Phase)
	September	North and South Edisto, Cooper Rivers (Intensive Phase)
	October	* Entire State (Intensive and Extensive Phases)
	November	North and South Edisto, Cooper Rivers (Intensive Phase)
	December	North and South Edisto, Cooper Rivers (Intensive Prase)
1974	January	*Entire State (Intensive and Extersive Phases)

North and South Edisto and Cooper Rivers; South Santee River; Winyah and Bull Bays; Drice, Inlet, and Nowell Creeks; Charleston Harbor; Ashley and Stono Rivers; Rock Creek; Ashepoo River; Whale Eranch; Port Royal Sound; Colleton River; and Calibogue Sound.

Table 2. Locations of 17 Estuarine Survey stations, Intensive Phase, occupied monthly in the North and South Edisto and Cooper Rivers, South Carolina, during the 12 -month annual cycle from February, 1973 through January, 1974.

Estuary	Station	Latitude	Longitude	Mean Depth (m)	$\frac{\text { Tddal }}{\text { Mean }}$	$\frac{\text { ange (} m \text {) }}{\text { Spring }}$	```Bottom Salinity Range (0/00)```	Bottom Temperature Range (C)	Bottom Type
North Edisto	EOOL - Yonges Island	$32^{\circ} 41.2 \mathrm{~N}$	$80^{\circ} 10.41 \mathrm{~W}$	7.4	2.0	2.3	14.0-28.7	10.4-30.1	sand - sheil - mud (hard)
	E002-Toogoodoo Creek	$32^{\circ} 42.3 \mathrm{~N}$	$80^{\circ} 17.3{ }^{\prime} \mathrm{W}$	3.6	1.9	2.3	11.9-28.4*	11.6-30.4*	sand - sheil - mud
	E003-Bears Bluff	$32^{\circ} 38.8{ }^{\prime} \mathrm{N}$	$80^{\circ} 15.7{ }^{\prime} \mathrm{W}$	7.3	1.8	2.2	16.4-28.9	9.4-29.8	sand and sheil
	E004 - Dawho River	$32^{\circ} 37.975$	$80^{\circ} 18.6 \mathrm{~W}$	4.?	1.8	2.2	14.2-28.2	14.2-30.2	sand
	E005 - Steamboat Creek	$32^{\circ} 36.2 \begin{aligned} & \text { \% }\end{aligned}$	$80^{\circ} 17.7^{\prime \prime}$	6.7	3.7	2.0	15.6-31.3	$9.4-29.9$	sand
	E006-Wadmalaw Island	$32^{\circ} 36.5^{\prime} \mathrm{N}$	$80^{\circ} 14.8{ }^{\prime} \mathrm{k}$	8.0	1.8	2.1	17.7-30.1	$9.2-29.9$	send
	E007-Point of Pines	$32^{\circ} 35.9 \mathrm{y}$ ($80^{\circ} 13.5{ }^{\prime} \mathrm{h}$	7.5	1.7	2.0	17.8-31.2	$8.1-29.3$	mud
	EOD - Deveaux Bank	$32^{\circ} 33.618$	$80^{\circ} 10.7^{\prime} \mathrm{w}$	10.2	1.8	2.1	22.2-34.4	$8.7-29.1$	shell and sand
South Edisto	D001 - Snuggedy Swamp	$32^{\circ} 39.7{ }^{\prime} \mathrm{N}$	$80^{\circ} 24.8$ w	2.8	1.9	2.2	-0.1-0.3*	$7.2-28.3^{*}$	sand
	D002-Sempson Isiand	$32^{\circ} 36.31 \mathrm{~N}$	$80025.1+$ W	10.6	1.9	2.2	- 0.1-10.8	7.2-29.0	mud ani she:
	D003 - Fenwick Island	$32^{\circ} 33.7 \mathrm{TN}$	$80^{\circ} 23.7^{\prime \prime} \mathrm{W}$	4.2	1.9	2.2	0.1-24.2*	$6.6-29.5 *$	sand
	D004 - Bay Point	$32^{\circ} 29.7^{\prime} \mathrm{N}$	$80^{\circ} 21.2^{1 / \mathrm{N}}$	7.3	1.8	2.1	14.2-34.0	8.6-29.0	sand
Copper River	COOL - The Tee	$33^{\circ} 04.0$ N	$79^{\circ} 55.5^{1 \mathrm{~W}}$	10.0	1.2	1.4	c0.1-0.2	$5.7-28.8$	mud (hard)
	C002-Big Island	$32^{\circ} 58.2^{\prime} \mathrm{N}$	$19^{\circ} 55.5^{\text {t }} \mathrm{N}$	7.4	1.4	1.7	c $0.1-18.1$	9.1-29.3	sand
	C003-N. Charleston	$32^{\circ} 53.8 \mathrm{~N}$	70057.61 W	6.8	1.5	1.8	0.1-13.7	11.2-29.1	sheli and sand
	C004 - Mouth of Cooper	$32^{\circ} 52.1 \mathrm{~N}$	$79^{\circ} 56.0{ }^{\prime} \mathrm{W}$	11.1	1.6	1.9	2.0-26.2	11.6-29.2	muct - sard - shell
	J003 - Cummings Point	$32^{\circ} 44.9$ N	79051.61 W	9.7	1.5	1.8	21.4-31.5	12.4-29.4	shell and sand

[^0]

Table 3. Locations of 16 Estuarine Survey stations, Extensive Phase, occupied quarteriy in a number of estuaries throughout the South Carolina coastal zone during the 12 -month annual cycle from February, 1973 through January, 1974.

Estuary	Station	Latitude	Longitude	Mean Depth (m)	$\frac{\text { Tidal }}{M_{i} a_{n}}$	$\frac{\text { Range }(m)}{\text { Spring }}$	Botton Salinity fange (0/00)	Bottom Temperature Range (c)	Botton Type
Northern Region	Y001-Winyah Bay	$33^{\circ} 15.6 \mathrm{~N}$	$79^{\circ} 15.4 \%$	4.2	1,0	1.2	<0.1-25.9	11.6×6.4	mud
	S001-South Santee	$33^{\circ} 08.8{ }^{+} \mathrm{N}$	$79^{\circ} 19.2^{1 W}$	3.5	1.2	1.4	12.6-23.1	12.7-29.5	sand and clay
	B003 - Bull Bay	$32^{\circ} 55.9{ }^{\prime} \mathrm{N}$	$79^{\circ} 36.2^{\prime W}$	5.0	1.5	1.7	32.1-34.2	10.4-29.5	mud and sand
	B002 - Frice Creek	$32^{\circ} 54.2^{\circ} \mathrm{N}$	$79^{\circ} 40.7^{1} \mathrm{~W}$	7.B	1.6	1.8	23.4-34.2	10.3-29.2	sand and shell
Charleston Region	B001 - Inlet Creek	$32^{\circ} 47.5^{\prime N}$	$79^{\circ} 49.5^{\prime W}$	4.2	1.6	1.8	23.7-33.8	14.7-27.8	sand and sheil
	W001 - Nowell Creek	$32^{\circ} 53.1{ }^{\prime} \mathrm{N}$	$79^{\circ} 52.6{ }^{\prime} \mathrm{w}$	3.5	1.8	2.1	11.2-18.4	14.7-29.0	sand and mud
	J001 - Fort Johnion	$32^{\circ} 45.41 \mathrm{~N}$	$79^{\circ} 55.1^{\prime} \mathrm{W}$	6.6	1.6	1.8	10.9-25.1	$13.2-28.0$	mud and sand
	Joon - Hog Islend	$32^{\circ} 47.11 \mathrm{~N}$	$79^{\circ} 53.2{ }^{1} \mathrm{~W}$	2.8	1.6	1.8	15.7-29.0	13.3-25.9	mud and silt
	K001-Asinley River	$32^{\circ} 48.61 \mathrm{~N}$	$79058.1^{1+}{ }^{\text {W }}$	5.5	1.6	1.9	$7.6-18.7$	$14.2-29.3$	mud
Southern Region	FOOl - Stono River	$32^{\circ} 44.9 . \mathrm{N}$	$80^{\circ} 00.7{ }^{1 / W}$	5.0	1.6	1.8	10.5-21.8	13.6-29.9	shell and sand
	H002 - Ashepoo Hiver	$32^{\circ} 34.0 . \mathrm{N}$	$80^{\circ} 29.9{ }^{\prime \prime}{ }^{\prime \prime}$	5.8	1.9	2.2	0.2-12.3	15.1-29.9	sant?
	H003 - Rock Creek	$32^{\circ} 30.9{ }^{\prime} \mathrm{N}$	$30^{\prime \prime} 27.9{ }^{1} \mathrm{~W}$	4.8	1.9	2.2	$32.0-24.5$	15.2-30.5	mud - sand - skell
	HOOL - Whale Branch	$32^{\circ} 32.1 \mathrm{~N}$	$80^{\circ} 43.7{ }^{\text {W }}$	5.2	2.2	2.5	20.4-25.9	$16.6-31.4$	mud - send - sheini
	POO2 - Port Royal Sound	$32^{\circ} 16.2^{\prime} \mathrm{N}$	$80^{\circ} 43.71 \%$	5.7	2.1	2.5	24.1-30.9	$14.1-30.0$	mud and sand
	Pool - Colleton River	$32^{\circ} 16.2^{\prime} \mathrm{N}$	$80^{\circ} 48.5^{\prime} \mathrm{W}$	7.5	2.3	2.7	22.3-30.14	$21_{4} \cdot 7-30.6$	mid - sand - clay
	cool - Calibogue Sound	$32^{\circ} 10.9{ }^{+} \mathrm{H}$	80047.8 m	6.7	2.2	2.5	22.2-28.8	14.3-30.5	mad - sand - shell

(Figure 2). Twenty-minute trawl tows were made against flood tide during daylight. All tows were made at an engine speed of 750 rpm , resulting in a vessel speed of about $2.5-3.0$ knots against flood tide. Distance covered on any trawl transect during a twenty-minute tow was in part dependent on water current and wind velocities at that location. During the year, distances covered on trawl transects averaged about 1.5 km (0.8 nautical miles/tow) and generally fell within a range of $1.1-1.9 \mathrm{~km}(0.6-1.0$ nautical miles/tow).

Description of trawl. Six-m (20-ft), semiballoon otter trawls, constructed to project specifications, were utilized throughout the study. These nets were built with $6-m$ ($20-f^{t}$) head rope and $8-m$ (26-ft) foot rope and were made of $2.5-\mathrm{cm}$ (1-inch) stretch mesh, knotless, green nylon netting throughout the body and cod end. The head rope, foot rope, and breast ropes were made of $1.0-\mathrm{cm}$ (3/8-inch) diameter Poly-Dac net ropes, with legs extended 1.2 m (4 ft) and heavyduty wire rope thimbles spliced in at each end with 9.3-cm (5/16-inch) screw pin shackles attached to fasten the nets onto the trawl doors. These ropes were hemmed in a 7.6 -cm (3-inch) dacron collar around the entire mouth of the net. The wooden trawl doors, 90.0 - cm (36-inches) long by 50.0 - cm (20-inches) wide by $3.5-\mathrm{cm}$ (1.5-inches) thick, had iron boots $7.6-\mathrm{cm}(3-1 n c h e s)$ wide and $1.0-\mathrm{cm}$ (3/8-inch) thick.

Three $15.2-\mathrm{cm}$ (6-inch) plastic floats were used on the head rope and 2/0 galvanized chain was hung loop-style on the foot rope. Flotation and chains were lashed to the collar of the head and foot ropes through 6.5-mm (1/4-inch) brass grommetts inserted into the coller.

Figure 2. The R / V ANITA, a $16-m$ (52-ft) shallow-draft research vessel, preparing to set a $6-m$ (20-ft) semiballoon otter trawl on one of the stations in South Carolina estuaries occupied throughout the study.

Catch processing. Specimens collected at each station were either processed immediately on board (Figure 3) or preserved in 10% buffered formalin and returned to the laboratory for identification, sorting, measuring, and weighing. All fish were identified to species, and scientific and common names used are those accepted by the American Físheries Society (Bailey, 2970).

Individual specimens were weighed to the nearest 0.1 gram utilizing a Mettler top-loading precision electronic balance, Model P-1l. Weighing techniques generally followed procedure standards for measuring fish weight outlined by Lagler (1968).

Total lengths were measured to the nearest millimeter on 75-cm measuring boards. Total length, as utilized in this study was equivalent to that used by Miller and Jorgenson (1969) and was the distance from the tip of the snout (jaws closed) to the tip of the longest lobe, or ray, of the caudal fin.

When ≤ 50 specimens of a given species were caught in a single tow, all specimens were individually measured. In those instances where extremely large numbers of any species were captured in a single tow, a total count was made, but individusl weights and measurements were taken only for a subsample. Subsampling was conducted as follows: if >50 to ≤ 250 were captured, 50 randomly-selected specimens were individually measured. If >250 to ≤ 500 were caught, 20% were measured. When >500 were caught, 10% were measured. The smallest and largest fish were selected prior to taking a representative sample of additional specimens.

Using this subsampling system, the project was assured of obtaining individual history data on all, or at least 50 , individuals over the entire size range of a given species in any trawl catch.

Figure 3. Scientific personnel of the South Carolina Wildife and Marine Resources Department processing a trawl catch resulting from a 20 -minute bottom tow. Such measurements provided quantitative information on lengthfrequencies, relative abundance, and seasonal distribution for 88 fish species frequenting South Carolina estuaries.

Total catch. Eighty-eight species were caught during the year. A sumary table for the entire year's catch, all stations combined, was prepared showing all species, their rankings in order of abundance by total numbers and weights, and the percent of the total number and weight contributed to the year's catch by each species. Similar tables were prepared for the North Edisto, South Edisto, and Cooper Rivers individually so that species rankings could be compared between these three estuaries that were sampled monthly. Several species, especially less common ones, were caught in equal numbers or weights during the year. In the tables listing species in decreasing order of abundance, all such species are assigned the same numerical rank. These ranking data were generated by IBM $370 / 145$ computer utilizing a FORTRAN program entitled "Species Rankings by Numbers, Weights, and Percents of total Catch" which was developed specifically for this study. An additional table was prepared showing all species and sumarizing whether each was present or absent in each estuary or state region during the year.

Total length, temperature, and salinity ranges. A table was prepared listing all species, their total length, bottom temperature, and bottom salinity ranges. Also, included in this table is a synopsis of the primary locations at which each species occurred during the year.

Length-frequency relationships. Length-frequency relationships were also tabulated for the 23 fish species most commonly captured by bottom trawl. For each species a single table was prepared combining lengthfrequency data for all stations acrosa the state.

For all species, the length-frequency data are presented by month in 5-m increment groups. For some species the largest specimens were combined in larger size increment groupings.

Relative abundance and seasonal distribution. For the eight most common fishes, numbers caught throughout the year were individually tabled by species, showing catch per month at each station in each estuary or state region. Species sumarized in this manner are: Anchoa mitchilli (bay enchovy), Bairdiella chrysura (silver perch), Cynoscion regalis (weakfish), Ictalurus catus (white catfish), Leiostomus xanthurus (spot), Micropogon undulatus (Atlantic croaker), Stellifer lanceolatus (star drum), and Urophycis regius (spotted hake). These relative abundance and seasonal distribution data were generated by IBM $370 / 145$ computer utilizing a FORTRAN program entitled "Summation of Trawl Catches (Numbers) by Station and Months" which was developed specifically for this study.

For an additional 15 fishes collected in moderate abundance, numbers caught thoughout the year were individually tabled by species, showing catch per month with data for all stations combined within each estuary or state region. Species summarized in this manner are: Alosa aestivalis (blueback herring), Anchoanepsetus (striped anchovy), Arius felis (sea catfish), Brevoortia tyrannus (Atlantic menhaden), Chloroscombrus chrysurus (Atlantic bumper), Dorosoma petenense (threadfin shad), Ictalurus punctatus (channel catfish), Larimus fasciatus (banded drum), Menticirrhus americanus (southern kingfish), Opisthonema oglinum (Atlantic thread herring), Opsanus tau (oyster toadfish), Peprilus alepidotus (harvestfish), Trichiurus lepturus (Atlantic cutlassfish), Trinectes maculatus (hogchoker), and Symphurus plegiusa (blackcheek tonguefish).

Within each table for the 23 most common species, the percentages of the total number collected were given for each month and location. Grand total for all months and locations combined was also recorded in each table.

Hydrographic Analyses
Six-liter capacity Van Dorn water sample bottle casts were made at all stations immediately before trawling. Samples were collected 1 m below the water surface and 0.3 m above the bottom at each station. Water temperatures were read immediately from stem thermometers internally mounted in the Van Dorn samplers. All water samples were then returned for salinity analysis by the chemical oceanography laboratory of the Marine Resources Research Institute. Salinity was analyzed utilizing a Beckman RS7B Induction Salinometer. Throughout this report, wherever specific estuaries were being described on the basis of their salinity characteristics, terminology followed the Venice System (1958).

RESULTS AIVD CONCLUSIONS

Total Catch Composition

A systematic listing of all fish species collected by bottom trawl in South Carolins estuaries Guring the l2-morth period from February, 1973 through January, 1974 is presented in Takle 4.

The estuaries or regions of the South Carolina coastal zone in which these species were obtained are sumarized in Table 5. Twenty-two of the 88 species caught were highly ubiquitous and were found in all estuaries or state regions sampled. Included in this group were the sciaenids Stellifer lanceolatus (star drum), Micropogon undulatus (Atiantic croaker), Leiostomus xanthurus (spot), Bairdiella chrysura (silver perch), and Cynoscion regalis (weakfish); the clupeids Brevoortia tyrannus (Atlentic menhaden) and Opisthonema oglinum (Atlantic thread herring); the carangids Chloroscombrus chrysurus (Atlantic bumper), Selene vomer (lookdown), and Vomer setapinnis (Atlantic moonfish); the bothids Paralichthys dentatus (summer flounder), Paralichthys lethostigma (southern flounder), and Citharichthys spilopterus (bay whiff); the cynoglossid Symphurus plagiusa (blackcheek tonguefish); the soleid Trinectes maculatus (hogchoker); the engraulid Anchoa mitchilli (bay anchovy); the ictalurid Ictalurus catus (white catfish); the batrachoid Opsanus tau (oyster toadfish); the gadid Urophycis regius (spotted hake); the bleniid Hypsoblennius hentzi (feather blenny); the trichiurid Trichiurus lepturus (Atlantic cutlassfish); and the triglid Prionotus tribulus [(bighead searobin), tentative identification].

```
Table 4. Systematic listing by orders and families for the }88\mathrm{ fish species
        collected by bottom trawl in South Carolina estuaries during the
        l2-month period from February, 1973 through January, 1974.
```

```
Order Squaliformes
```

Order Squaliformes
Family Carcharhinidae
Family Carcharhinidae
Rhizoprionodon terrgenovae (Atlantic sharpnose shark)
Rhizoprionodon terrgenovae (Atlantic sharpnose shark)
Family Sphyrnidae
Family Sphyrnidae
Sphyrna zygaena (Smooth hammerhead)
Sphyrna zygaena (Smooth hammerhead)
Family Squalidae
Family Squalidae
Squalus acenthias (Spiny dogfish)
Squalus acenthias (Spiny dogfish)
Order Rajiformes
Order Rajiformes
Family Dasyatidae
Family Dasyatidae
Dasyatis sabina (Atlantic stingray)
Dasyatis sabina (Atlantic stingray)
Gymnura micrura (Smooth butterfly ray)
Gymnura micrura (Smooth butterfly ray)
Family Myliobatidae
Family Myliobatidae
Rhinoptere bonasus (Cownose ray)
Rhinoptere bonasus (Cownose ray)
Order Acipenseriformes
Order Acipenseriformes
Family Acipenseridae
Family Acipenseridae
Acipenser oxyrhynchus (Atlantic sturgeon)
Acipenser oxyrhynchus (Atlantic sturgeon)
Order Semionotiformes
Order Semionotiformes
Family Lepisosteidae
Family Lepisosteidae
Lepisosteus osseus (Iongnose gar)
Lepisosteus osseus (Iongnose gar)
Order Anguilliformes
Order Anguilliformes
Family Anguillidae
Family Anguillidae
Anguilla rostrata (American eel)
Anguilla rostrata (American eel)
Family Congridae
Family Congridae
Conger oceanicus (Conger eel)
Conger oceanicus (Conger eel)
Order Clupeiformes
Order Clupeiformes
Family Clupeidae
Family Clupeidae
Alosa aestivalis (Blueback herring)
Alosa aestivalis (Blueback herring)
Alosa sapidissima (American shad)
Alosa sapidissima (American shad)
Brevoortia tyrannus (Atlantic menhaden)
Brevoortia tyrannus (Atlantic menhaden)
Dorosoma cepedianum (Gizzard shad)
Dorosoma cepedianum (Gizzard shad)
Dorosoma petenense (Threadfin shad)
Dorosoma petenense (Threadfin shad)
Opisthonema oglinum (Atlantic thread herring)
Opisthonema oglinum (Atlantic thread herring)
Family Engraulidae
Family Engraulidae
Anchoa hepsetus (Striped anchovy)
Anchoa hepsetus (Striped anchovy)
Anchoa mitchilli (Bay anchovy)
Anchoa mitchilli (Bay anchovy)
Order Myctophiformes
Order Myctophiformes
Family Synodontidae
Family Synodontidae
Synodus foetens (Inshore lizardfish)
Synodus foetens (Inshore lizardfish)
Order Siluriformes
Order Siluriformes
Family Ictaluridae
Family Ictaluridae
Ictalurus catus (White catfish)
Ictalurus catus (White catfish)
Ictalurus melas (Black bullhead)
Ictalurus melas (Black bullhead)
Ictalurus natalis (Yellow bullhead)
Ictalurus natalis (Yellow bullhead)
Ictalurus nebulosus (Brown bullhead)
Ictalurus nebulosus (Brown bullhead)
Ictalurus platycephalus (Flat bullhead)
Ictalurus platycephalus (Flat bullhead)
Ictalurus punctatus (Channel catfish)

```
        Ictalurus punctatus (Channel catfish)
```

Table 4. (Continued.)

```
    Family Ariidse
        Arius felis (Sea catfish)
        Bagre marinus (Gafftopsail catfish)
Order Batrachoidiformes
    Family Batrachoididae
        Opsanus tau (Oyster toadfish)
Order Gobiesociformes
    Femily Gobiesocidae
        Gobiesox strumosus (Skilletfish)
Order Gadiformes
    Femily Gadidae
        Urophycis earlli (Carolina hake)
        Urophycis floridanus (Southern hake)
        Urophycis regius (Spotted hake)
    Family Ophidiidae
        Rissola marginata (Striped cusk-eel)
Order Atheriniformes
    Family Atherinidae
        Menidia menidia (Atlantic silverside)
Order Gasterosteiformes
    Family Syngnathidae
        Syngnathus floridae (Dusky pipefish)
        Syngnathus fuscus (Northern pipefish)
Order Perciformes
    Family Percichthyidae
        Morone saxatilis (Striped bass)
    Family Serranidae
        Centropristis philadelphica (Rock sea bess)
        Centropristis striata (Black sea bass)
    Family Centrarchidge
        Iepomis guritus (Redbreast sunfish)
    Family Percidae
        Perca flavescens (Yellow perch)
    Family Pomatomidae
        Pomatomus saltatrix (Bluefish)
    Family Carangidae
        Caranx hippos (Crevalle Jack)
        Chloroscombrus chrysurus (Atlantic bumper)
        Selene vomer (Lookdown)
        Vomer setapinnis (Atlantic moonfish)
    Family LutJaridae
        Lut,janus griseus (Gray snapper)
    Family Pomadesyidae
        Orthopristis chrygoptera (Pigfish)
    Family Sparidae
        Lagodon rhomboides (Pinfish)
```

Table 4. (Continued.)

```
    Family Sciaenidae
    Bairdiella chrysura (Silver perch)
    Cynoscion nebulosus (Spotted seatrout)
    Cynoscion nothus (Silver seatrout)
    Cynoscion regalis (Weakfish)
    Larimus fasciatus (Banded drum)
    Ieiostomus xanthurus (Spot)
    Menticirrhus americanus (Southern kingfish)
    Micropogon undulatus (Atlantic croaker)
    Pogonias cromis (Bleck drum)
    Stellifer lanceolatus (Star drum)
Family Ephippidae
    Chaetodicterus faber (Atlantic spedefish)
Family Mugilidae
    Mugil cephalus (Striped mullet)
    Mugil curema (White mullet)
Family Sphyraenidae
    Sphyraena guachancho (Guaguanche)
    Family Uranoscopidae
    Astroscopus y-graecum (Southern stargazer)
    Family Blennildae
    Hypsoblennius hentzi (Feather blenny)
Family Gobiidae
    Gobionellus boleosoma (Darter goby)
    Gobionellus hastatus (Sharptail goby)
    Gobionellus stigmaticus (Marked goby)
    Gobiosoma bosci (Naked goby)
    Gobiosoma ginsburgi (Seaboard goby)
Family Trichiuridae
    Trichiurus Iepturus (Atlantic cutlassfish)
Family Scombridae
    Scomberomorus maculatus (Spanish mackerel)
    Family Stromateidae
    Peprilus alepidotus (Harvestfish)
    Peprilus triacanthus (Butterfish)
Family Triglidae
    Prionotus carolinus (Northern searobin)*
    Prionotus evolans (Striped searobin)*
    Prionotus tribulus (Bighead searobin)*
Order Pleuronectiformes
    Family Bothidae
    Ancylopsetta quadrocellata (Ocellated flounder)
    Citharichthys spilopterus (Bry whiff)
    Etropus crossotus (Fringed flounder)
    Paralichthys dentatus (Summer flounder)
    Paralichthys Iethostigma (Southern flounder)
    Scophthalmus aquosus (Wincowpane)
    Family Soleidae
    Trinectes maculatus (Hogchoker)
Family Cynoglossidae
    Symphurus plagiusa (Blackcheek tonguefish)
```

[^1]Table 4. (Continued.)

Order Tetraodontiformes
Family Balistidae
Monacanthus hispidus (Planehead filefish)
Family Tetraodontidae
Lagocephalus laevigatus (Smooth puffer)
Family Diodontidae Chilomycterus schoepfi (Striped burrfish)

Table 5. Species occurrence by locality sumarized from bottom trawl catches in South Carolina estuaries during the 12 -month period from February, 1973 through January, 1974.

Species	Monthly Sampling			Quarterly Sampling		
	North Edisto	South Edisto	Cooper River	Northern Region	Charleston Region	Southern Region
Acipenser oxyrhynchus	\%	*				*
Alosa aestivalis	*	*	*		*	
Alosa gapldisgima	*	*	*		*	*
Anchos hepsetus	*	*	*			
Anchoa mitehilli	*	*	*	*	*	*
Ancylopsetta quadrocellata	*		*		*	*
Antuilia rostrata		*	*	*		
Arius felis	*	*	*	*		*
Antroscopus y-graecum	*					
Brore marinus	\cdots	*	*		*	*
Baindifella chrysurg	*	*	*	*	*	*
Brevoortia tyoannus	*	*	*	*	*	*
Caranx hippos	*		*	*		
Centropristis philadelphica	*		*	*		*
Centropristis gtriata	*		*	*	*	*
Chaetodipterus faber	*		*			*
Chilomveterus schoepfi						*
Chloroscombrus chrysurus	*	*	*	*	*	*
Cithardchthys apilopterus		*	*	*	*	*
Cynoseion nebulosus	\#		*	*	*	\%
Cymoscion nothus	*	*				*
Cynoscion regalis	*	*	*	*	*	*
Conger oceanicus					*	
Dasyatis sabina	*	*	*			
Doroaoma cepedianum			*			
Dorosoma petenense	\cdots		*	*	*	*
Etropus erossotus	*	*	*		*	*
Gobiesox strumosus	*		*	*		
Gobionellus boleasoma	*		*			
Gobionellus stigmaticus		*				
Gobiosoma bosci	*					
Gobiosoma ginsburgi		*				
Gymnura micrura	*					*

Table 5. (Continued.)

Species	Monthly Sampling			Quarterly Sampling		
	North Edisto	South Edisto	Cooper River	Northern Region	Charleston Region	Southern Region
Hypsoblennius hentzi	*	*	*	*	*	*
Ictalurus catus	*	*	*	*	*	*
Ictalurus melas			*			
Ictalurus natalis			*			
Ictalurus nebulosus			*			
Ictalurus platycephalus			*			
Ictaiurus punctatus	*	*	*			
Lagocephalus laevigatus		*	*			
Lagodon rhomboides	*			*	*	
Larimue fasciatus	*	*		*		*
Leiostomus xanthurus	*	*	*	*	*	*
Lepisosteus osseus		*	*		*	*
Lepomis auritus			*			
Lutjanus griseus		*	*	*		
Menidia menidia	*					
Menticirrhus americanus	*	*	*	*		*
Micropogon undulatus	*	*	*	*	*	*
Monacanthus hispidus	*	*			*	*
Morone saxatilis		*	*			
Mugil cephalus	*				*	
Nugil curema	*					
Opisthonema oglinum	*	*	*	*	*	*
Opsanus tau	*	*	*	*	*	*
Orthopristis chrysoptera	*			*		*
Paralichthys dentatus	*	*	*	*	*	*
Paralichthys lethostizma	*	*	*	*	*	*
Peprilus alepidotus	*		*	*	*	*
Peprilus triacanthus.	*		*	*	*	*
Perca ilayescens			*			
Pogonies cromis			*			
Pomatomus saltatrix	*	*	*		*	
Prionotus carolinus*		*		*		*
Prionotus evolans**						*
Prionotus tribulus*	*	*	*	*	*	*

*Tentative identification.

Table 5. (Continued.)

Species	Monthly Sampling			Quarterly Sampling		
	North Edisto	South Edisto	Cooper River	Northern Region	Charleston Region	Southern Region
Rhinoptera bonasus	*					
Rhizoprionodon terraenovae	*			*		
Rissola marginata	*					*
Scombercmorus maculatus	*	*	*	*	*	
Scophthalmus aquosus	*	*		*		
Selene vomer	*	*	*	*	*	*
Sphyraena guachancho	*					
Sphyrna zygaena						*
Squelus acanthias	*					
Steliffer lanceolatus	*	*	*	*	*	*
Symphurus plagiusa	*	*	*	*	*	*
Syngnathus floridae	*					
Syngnathus fuscus				*		
Synodus foetens					*	
Trichiurus Iepturus	*	*	*	*	*	*
Trinectes maculatus	*	*	*	*	*	*
Urophycis earlli	*					
Urophycis floridanus	*			*	*	*
Urophycis regius	*	*	*	*	*	*
Vomer setapinnis	*	*	*	*	*	*

Numbers of species and families, listed by order, and their relative contributions to bottom trawl catches in South Carolina estuaries during the 12-month period from February, 1973 through January, 1974 are sumarized in Table 6. Represented in the year's catch were 46 families from 16 orders. Six families were represented by four or more species. These families were Sciaenidae (10 species), Clupeidae (6 species), Ictaluridae (6 species), Bothidae (5 species), Gobiidae (5 species), and Carangidae (4 species). In terms of numerical abundance, sciaenids alone made up 67.9% of the year's catch, followed by engraulids with 19.6%. Sciaenids also contributed the greatest biomass (62.5\% of the total catch weight), followed by ictalurids (21.2%).

Total numbers, total weights, rankings in order of abundance by number and weight, and percentage of total catch represented by all fish species captured by bottom trawl (all stations combined) in South Carolina estuaries from February, 1973 through January, 1974 are sumnarized in Table 7.

Description of Catch (Most Common Species)

Stellifer lanceolatus (Star Drum)

The star drum (Stellifer lanceolatus), one of the smaller sciaenids, was the most abundant bottom-dwelling species of estuarine fish caught during the study (Table 7). Star drum was also described as the most abundant estuarine fish in South Carolina in earlier reports (Dawson, 2958; Bearden, 1964; Lunz and Schwartz, 1970). This fish ranges from Chesapeake Bay to Texas and possibly to Mexico (Hildebrand and Cable, 1934) and has been reported to be one of the most abundant fishes on

Table 6. Numbers of species and families by order and their relative contributions (by numbers and weights) to bottom trawl catches ir. South Carolina estuaries during the 12 -month period from February, 1973 through January, 1974.
Orders and Families
Represented in Catct

Table 6. (Continucd.)

Orders and Families Represented in Catch	Syecies Represented (Number)	Relative Numbera		Relative Biomass	
		Total Number Caught	Fercent of Total Catch	$\begin{aligned} & \text { Total } \\ & \text { Weight } \\ & \text { (kg) } \end{aligned}$	$\begin{aligned} & \text { Percent } \\ & \text { of Total } \\ & \text { Cateh } \end{aligned}$
Order Gobiesociformes					
Family Gobiesocidae	1	3	<0.1	<0.1	<0.1
Order Gadiformes					
Femily Gadidae	3	1,621	2.6	17.9	3.7
Family Ophidiidae	1	1,62	<0.1	<0.1	<0.1
Order Atherinitormes					
Family Atherinidae	1	3	<0.1	<0.1	<0.1
Order Gasterosteiformes					
Family Syngnathidae	2	2	<0.1	<0.2	<0.1
Order Perciformes					
Family Percichthyidae	1	33	<0.1	0.2	<0.1
Family Serranidae	2	21	<0.1	0.4	<0.1
Famlly Centrarchidae	1.	1	<0.1	<0.1	<0.1
Family Percidae	1	3	<0.1	<0.1	<0.1
Family Pomatomidae	1	17	<0.1	1.2	0.2
Femily Carangidae	4	690	1.1	4.3	0.9
Family Lutjenidae	1	5	<0.1	<0.7	<0.1
Family Pomadasyidae	1	5	<0.1	0.4	<0.1
Family Sparidae	1	-2, 6^{6}	60.1	2.4	<6. 1
Family Sciaenidae	10	42,568	67.9	285.2	58.1
Family Eyhippidae	1	41	<0.1	1). 5	<0.1
Family Mugilidae	2	4	<0.1	< 3.1	<0.1
Family Sphyraenidse	1	1	<0.1	<0.1	<0.1
Family Uranoscopidae	1	± 2	<0.1	<0.1	<0.1
Family Blenniidae	1	35	<0.1	0.2	<0.1
Family Gobiidae	5	6	<0.1	<0.i	$\leqslant 0.1$
Family Trichiuridae	1	189	0.3	7.6	1.5
Fanily Scombridae	1	17	<0.1	0.4	<1). 1
Family Stromateidae	2	$\div 69$	0.3	2.0	0.4
Family Triglidae	3	28	<0.1	<0.1	<0.1

Table 6. (Continued.)

Orders and Families Represented in Catch	Species Represented (Number)	Relative Numbers		Relative Biomass	
		Total Number Caught	Percent of Total Catch	Total Weight (kg)	$\begin{aligned} & \text { Fercent } \\ & \text { of Total } \\ & \text { Cateh } \end{aligned}$
Order Pleuronectiformes					
Family Bothidae	6	103	0.2	6.9	1.4
Femily Soleidae	1	399	0.6	3.5	0.7
Family Cynoglossidae	1	368	0.6	6.0	1.2
Order Tetraodontiformes					
Family Balistidae	1	9	<0.1	<0.1	<0.1
Family Tetrsodontidae	1	2	<0.1	<0.1	<0.1
Family Diodontidae	$\underline{1}$	1	<0.1	<0.I	<0.1
Totals	88	62,684	100.0	<490.5	100.0

Table 7. Total numbers, total weights, rankings in order of abundance by number and weight, and percentage of total catch represented

Species	Relative Numbers			Relative Biomnss		
	Total Number Caught	Numerical Rank	Percent of Total Catch	Total Weight (kg)	Biomess Rank	Percent of Total Cateh
Stellifer lenceolatus	23,992	1	38.3	105.6	1	19.3
Anchon mitenilli	12,074	2	19.3	19.4	7	19.3
Micropogon undulatus	9,030	3	24.4	95.5	2	17.4
Lelostomus xanthurus	5,347	4	8.5	57.1	3	10.4
cymoscion regails	2,136	5	3.4	31.0	6	5.7
Bairdiella chrysina	1,863	6	3.0	43.6	5	8.0
Istalurus catus	1,732	7	2.8	54.2	4	9.9
Brophycí regius	1,612	8	2.6	17.6	8	3.2
Brevoortia tyrannus	823	9	1.3	8.9	11	1.6
Chioroscombrus chrysurus	578	10	0.9	3.4	20	0.6
Alose eegtivalis	462	11	0.7	1.5	33	0.3
Trinectes macujatus	407	12	0.6	3.5	19	0.6
Symphurus plagiuse	362	13	0.6	6.0	14	1.1
Dorosoma geterienge	327	14	0.5	0.9	36	0.2
Anchos hepsetug	216	15	0.3	1.7	30	0.3
	214	16	0.3	1.6	32	0.3
Trichiurus lepturus	189	17	0.3	7.6	13	1.4
Peprilug elepidotus	151	18	0.2	1.8	28	0.3
Arius feije	90	19	0.1	10.0	10	1.8
Ictailurug punctatus	77	20	0.1	3.2	23	0.6
0몽p쑈 tal	76	21	0.1	4.1	17	0.8
Iarimus fosciatus	75	22	0.1	2.1	26	0.4
Menticirrhus americanus	75	22	0.1	1.8	27	0.3
Ictapjurug nebulosug	53	23	0.1	2.6	24	0.5
Yomer setapinnis	53	23	0.1	0.2	52	<0.1
Bagre martmus	50	24	0.1	0.4	45	0.1
Chaetadioterus faber	41	25	0.1	0.5	40	0.1
Cymgraion nothus	40	26	0.1	1.6	31	0.3
Selore yomer	39	27	0.1	0.4	43	0.1

Table 7. (Continued.)

Species	Relative Numbers			Relative Biomass		
	Total Number Caught	Numerical Hank	Percent of Total Catech	Total Weight (kg)	Biomass Rank	```trercent of Total Catch```
Anculile rostrata	35	28	0.1	4.0	18	0.7
Eypooblennius hentzi	35	28	0.1	8.3	50	0.1
Morone saxatilis	33	29	0.1	0.2	55	<0.1
Alo	28	30	<0.1	0.2	53	<0.1
Paralichthys dentatus	25	31	<0.1	1.7	29	0.3
Paralichthys lethgotimam	25	31	<0.1	4.9	15	0.9
Lepiapsteut 오gepre	24	32	<0.1	17.5	9	3.2
Priongtug tribulus.	24	32	<0.1	0.1	67	<0.1
Cithareatioys spilogterus	23	33	<0.1	0.2	57	<0.1
Cangox hipoos	20	34	<0.1	0.3	51	<0.1
Feprilus triacanthus	18	35	<0.1	0.2	56	<0.1
Pomatomus saltatrix	17	36	<0.1	1.2	34	0.2
Scomberomorus maculatus	17	36	<0.1	0.4	41	0.1
Etropus crosaotus	15	37	<0.1	0.1	61	<0.1
Acipenser oxyrhynchus	34	38	<0.1	7.7	12	1.4
Centropriatis atriata	14	38	<0.1	0.3	47	<0.1
Astroscopus y y-6raecum	12.	39	<0.1	0.1	63	<0.1
Scophthalmus aquosus	11	40	<0.1	0.3	48	<0.1
Monacanthus hispidus	9	41	<0.1	<0.1	69	<0.1
Centropristis philadelphica	7	42	<0.1	0.1	60	<0.1
Crnoscion nebulosix	6	43	<0.1	0.5	38	0.1
Iatodon rbomboldes.	6	43	<0.1	0.4	42	0.1
Urophycis earili	6	43	< 0.1	0.2	54	<0.1
Iutianus grigeus	5	44	<0.1	0.1	66	<0.1
Onthopriftis shrysopters	5	4.4	<0.1	0.4	44	0.1
Syopang foetens	5	44	<0.1	0.3	49	0.1
Ancylopsetts quadrocelinta	4	45	<0.1	< 0.1	70	<0.1
Gymnura. micrurs	4	45	<0.1	4.7	16	0.9
Pogonias cromie	4	45	<0.1	3.3	22	0.6
Dasyatis sabina	3	46	<0.1	2.4	25	0.4
Gobjesax strumosus	3	46	<0.1	<0.1	75	<0.1

*Tentative identification.

Table 7. (Continued.)

Species	Relative Numbers			Roial_ Relative Biomass		
	Total Number Caught	Numerical Rank	Percent of Total Catch	Total Weight (kg)	Biomuss Rank	Percent of Total Cateh
Intalurus natalis	3	46	<0.1	0.8	37	0.1
Menidia mentdia	3	46	<0.1	<0.1	77	<0.1
Perca flevebcens	3	46	<0.1	<0.2	72	<0.1
Prionotus carolinus*	3	46	<0.1	< 0.1	76	<0.1
Vrophycio florldanus	3	46	<0.1	0.1	59	<0.1
Gobiosoma bosci	2	47	<0.1	<0.1	79	< 0.1
Ctalurus platycephalus	2	47	<0.1	0.3	46	0.1
Lagocephelus laevigatus	2	47	<0.1	0.1	65	<0.1
Kugil cephaius	2	47	<0.1	<0.1	71	<0.1
Mugil curema	2	47	<0.1	<0.1	73	<0.1
Rhizoprionodon terraenovae	2	47	<0.1	0.5	40	0.1
Eissola marginata	2	47	<0.1	0.1	62	<0.1
Chilanyeterus schoepfi	1	48	<0.1	<0.1	82	<0.1
Conger oceanicus	1	48	<0.1	0.1	58	<0.1
Dorosoma cepedianum	1	48	<0.1	<0.1	78	<0.1
Gobionelius boleosoma	1	48	<0.1	<0.1	85	<0.1
Gobionellus bastatus	1	48	<0.1	<0.1	68	< 0.1
Goblonellus stigriaticus	1	48	<0.1	<0.1	74	<0.1
Gobloboma ginsburgi	1	48	<0.1	<0.1	86	<0.1
Ictalurus melag	1	48	<0.1	0.1	64	<0.1
Lepomis auritus	1	48	<0.1	<0.1	80	<0.1
Frionotus evolans *	1	48	<0.1	<0.1	83	<0.1
Rhinoptera bonasus	1	48	<0.1	1.1	35	0.2
Sphyraena guachancho	1	1.8	<0.1	<0.1	84	<0.1
Sphyrna zygaena	1	48	<0.1	0.5	39	0.1
Squalus acanthias	1	1.8	<0.1	3.4	21	0.6
Symonathys floridue	1	48	<0.1	<0.1	87	<0.1
Symenathus fuscus	1	48	<0.1	<0.1	81	<0.1
GRAND TOTALS	62,684		100.0	$=547.7$		100.0

the south Atlantic and Gulf coasts (Welsh and Breder, 1923). However, star drum abundance varies considerably within this range. Although present in the Chesapeake Bay area, this species is more abundant in North Carolina (Hildebrand and Cable, 1934), South Carolina (Dawson, 1958; Bearden, 1964; and Lunz and Schwartz, 1970), Georgia (Dahlberg and Odum, 1970; Dahlberg, 1971; Hoese, 1973), and in Florida south to Cape Canaveral (Anderson, 1968). Star drum is not common in southeastern Floride (Gunter and Hall, 1963) or along Florida's west coast (Joseph and Yerger, 1956; Springer and Woodburn, 1960). Low numbers of star drum were reported in Alabama (Swingle, 1971) and Mississippi (Christmas and Waller, 1973) with numbers increasing to the west in Louisiana (Gunter, 1938; Perret et el., 1971; Perret and Caillouet, 1974) and Texas (Gunter, 2941). This species was represented by some life stage in every month and in every major estuary or coastal region of South Carolina (Table 5). Dahlberg and Odum (1970) also found star arum abundant during all months in two Georgia estuarine systems,

Total catch. During the year, 23,992 star drum, with a total weight of 105.6 kg , were obtained at all stations combined (Teble 7). This species ranked first in numerical abundance statewide, constituting 38.3\% of the total number of fish captured and first in weight, representing 19.3% of the total fish biomass for the year.

Total length, temperature, and salinity ranges. Star drum collected in the estuaries during the year had a total length range of $16-217 \mathrm{~mm}$ and occurred over a bottom salinity range of 0.9-34.4\% and a bottom temperature range of 8.6-30.5 C (Table 8).

Table 8. Total length ranges, bottom salinity and temperatare ranges, and primary locationa at which 88 fish apeciea were captured by bottom trawl In South Carolina estuaries from February, 1973 throueh January, 1974 .

Species	Total Length Range (mon)	Bottom Salinity Range ($\% / 00$)	Bottom Temperature Range (c)	Primary Locations
Acjpenser oxyrhynchus (Atiantic sturgeon)	110-615	<0.1-33.2	16.2-29.9	Upper South Edisto River
Alose aestivalis (Blueback herring)	35-307	0.1-25.1	11.5-29.0	Wide distribution
Aloas sBpidissima (American shad)	50-181	$0.1-27.3$	11.5-29.3	Wide distribution
Anctor hepsetus (Striped anchovy)	58-240	$8.8-34.4$	16.9-30.5	Edisto and Cooper Rivers
Anchoa mitchilli (Bay anchovy)	$22-88$	$<0.1-34.2$	10.3-31.4	Wide distribution
Ancylopsetta quadrocellata (Ocellated flounder)	38-118	21.8-25.1	17.1-22.0	North Edisto, Charleston Region
Anguilla rostrata (American eel)	265-528	0.1-25.9	16.2-22.8	Upper Cooper River
Arius felis (Sea catfish)	58-296	0.2-33.2	16.8-30.5	Wide distribution
Astroscopus y-graecum (Southern gtargazer)	25-79	10.5-30.8	13.7-31.9	North Edisto River
Bagre marinus (Gafftopsail cetfish)	15-158	8.3-27.1	18.3-30.1	Wide distribution
Bairdiella chrysura (Silver perch)	40-192	$0.1-34.4$	$7.2-31.4$	Wide distribution
Brevoortia tyrannus (Atluntic menhaden)	35-243	$0.1-30.3$	12.0-31.0	Wide distribution
Carcnx hippos (Crevalle jack)	28-151	$9.5-28.0$	17.0-29.3	Sooper and North Edisto Rivers:
Centropristis philedelphica (Rock sea bass)	35-126	$4.8-25.9$	$21.0-30.0$	Cooper River (Mouth), Port Royr: Sound
Centropristis striata (Black sea bass)	60-298	10.9-33.8	10.3-29.2	North Idisto (Deveaux Bark)
Chaetodipterus faber (Atlantic spade fish)	37-137	14.2-33.2	26.5-30.1	North Fdisto and Coover Rivers
Chilomycterus schoepfi (Striped burrfish)	44	25.4	30.5	Calibogue Sound
Chloroscombrus chrysurus (Atlantic bumper)	$38-132$	13.7-32.3	18.4-30.5	Sourh Edisto River
Citharichthys spilopterus (Eay whiff)	68-131	21.4-26.6	10.4-29.5	Port Royal, Charleston Fegior:
Cynoscion nebulosus (Spotted seatrout)	202	26.2	12.7-17.4	Cooper lives (Moutr)
Cynoscion nothus (Silver seatrout)	78-180	$23.8-30.8$	$27.4-30.5$	North Eitisto, Calibogue sicunt
Cynoscion regalis (Weakfish)	23-323	0.4-34.4	13.7-31.4	Wide distribu:ion
Conger oceanicus (Conger eel)	450	<0. i	17.8	Charleston Refion, Ft. Minsma
Dasyatis Sabina (Atlantic stingray)	202-509	0.2-28.9	17.1-27.5	North \& South Edisto, Cooper River
Dorosuma cepedianum (Gizzard shad)	112	9.5	17.0	Cocper Oiver (Bie Isiand)
Dorosoma petenense (Threadfin shad)	$36-134$	$0.1-32.3$	16.6-29.9	Wide distribution
Etropus crossotus (Fringed flounder)	39-105	14.2-31.2	17.1-30.1	North \& South Fdisto, Cooper River
Gobiesox strumosus (Skilletfish)	57-61	20.9-26.?	14.e - 17.4	Luwer Nortti Edisto \& Cooper River
Gobionellus boleosoma (Darter goby)	74	21.4	29.4	Charleston Harbor (Cummings Point)
Gobionellias hastatius (Sharptail goby)	254	24.6	8.6	North Edisto (Point of Pines)
Gobionellus stiematicus (Marked goby)	62-63	0.2-24.1	29.4	Prort Roygl Sound, South Edisto River

Table 8. (Continued.)

Species	Total Length Range (mm)	Bottom Salinity Range (\% $/ 00$)	Bctton Temperature Range (C)	Primary Locations
Gobiosome bosci (Naked goby)	61-72	15.0-22.8	27.6	Upper North Edisto River
Goblosoms ginsburgi (Seaboard goby)	42	14.2	16.6-21.5	South Edisto River
Gympura micrura (Smooth butterfly ray)	248-327	$1.1-28.0$	26.5-30.5	North Edisto and Calibogue Sound
Hypscblennius bentzi (Feather blenny)	67-108	20.3-34.4	$10.3-30.4$	North Edisto ard Cooper River
Ietaiuma catus (White catfigh)	28-392	<0.1-23.9	11.6-31.4	Upper South Edisto, Cooper and Ashepoo Rivers
Ictalurus nataiis (Yellow bullhead)	97-351	<0.1-0.1	14.2	Upper South Edisto ard Cooper Rivers
Ictalurus nebulosus (Brown bullhead)	59-269	0.1-3.t	$8.7-28.8$	Cooper River
Ictalurus platycephalus (Flat bullhead)	201-272	0.1	14.2	Cooper River (The Tce)
Ictalurus punctatus (Channel catfish)	$56-234$	$0.1-0.2$	8.7-27.8	Upper Soutl: Edisto and Cooper fivers
Legocerbalus laevigatus (Smooth puffer)	95-110	22.6-22.7	28.8-29.0	Lower South Edisto and Cooper Rivers
Lagodon rhomboides (Pinfish)	$62=192$	29.8-33.8	$20.5=24.4$	Worth Edisto and Charleston Segion
Larimus fasciatus (Banded drum)	$37-146$	12.9-34.2	16.0-30.5	North Edisto River
Leiostomus xanthurus (Spot)	22-188	$0.1-3^{4.4}$	11.6-31.4	Wide fistribution
Lepisorteus osseus (Longnose gar)	$314-1,018$	0.1 - 18.1.	$9.1-29.9$	Cooper Fiver and Upper South Edisto
Lepomig auritus (Redbreast sunfish)	76	0.1	26.0	Upper Coover River (The Tee)
Lutjanus griseus (Gray snapper)	$70-107$	0.1-34.2	17.0-27.4	South Edisto, Charleston Region
Menidia menidis (Atlantic silverside)	85	21.8	13.7-17.5	North Edisto, Charleston Regior:
Menticirrhus americanus (Southern kingfish)	13 - 271	0.9-34.2	9.2-30.1	Wide distribution
Micropogon undulatus (Atlantic crosker)	20-293	<0.1-34.2	$9.2-31.4$	Wide distribution
Monacanthus hispidus (Planehead filefish)	$16-76$	$4.2-32.3$	$9.2-30.6$	Calibogue Sound, North Edigto
Morone saxatilis (Striped base)	47-14?	<0.1-0.3	14.2-28.8	Upper South Edisto (Snuggedy Swemp;
Mugil cephalus (Striped mullet)	93	23.2	$13.2-28.2$	North Edisto and Charlestor liarbor
Mugil curema (White mullet)	98-111	23.2	28.1	Upper North Edisto (Yonges Island)
Opiothonema oglinum (Atlantic thread herring)	$40-174$	0.1-34.7	12.7-30.1	North Eisisto and Cooper Rivers
Opsanus tau (Oyster toadfibh)	$23-245$	$2.0-34.2$	11.6-30.4	Wide distribution
Orthopristis chryeoptera (Pigfish)	171-264	$27.6-34.2$	19.6-24.4	Lower North Edisto, Northern Region
Paralichthys dentatus (Summer flounder)	$45-250$	$3.4-28.7$	$8.7-30.6$	North Edisto, Cooper, Southern Region
Paralichthys lethostigma (Southern flounder)	34-412	0.1-28.6	$9.4-30.1$	North * South Edisto, Charleston Region
Pegrilus alepldotus (Harvest fish)	20-131	0.9-33.?	17.4-30.1	Wide distribution
Peprihus triacarthus (Butterfish)	$50-143$	$14.2-26.7$	$21.3-30.5$	North Edisto, Charleston Harbor

Table B. (Continued.)

Species	Totel Length Range (mim)	Botton Salinity Renge (\%/00)	Bottom Temperature Range (C)	Primary Locations
Farca flavegcens (Yellow perch)	92-107	0.1	8.7 - 34.2	Upper Cooper River (The Tee)
paganiag cromis (Black drum)	180-512	$3.4-4.8$	11.2-16.2	Upper Cooper River
Pomatomus egitatrix (Bluefish)	65-280	0.7-34.4	16.2-30.5	North and South Edisto, Cooper River
Prionotus carolinus (Northern searobin)*	Not Available	$16.9-32.1$	Not Available	Upper Cooper River
Prionotus evolans (Striped searobin)*	Not Available	25.4	Not Available	Calibogue Sound (Marsh Island)
$\frac{\text { Prionotus }}{\text { ghinopticiolus }}$ (Bighead searobin)*	16-96	0.1-34.2	16.9-28.0	North Edisto, Charleston Region
ghlnoptera bonasus (Cownose ray)	366	24.6	27.6	North Edisto (Point of Pines)
$\frac{\text { Rhizoprionodon }}{\text { (At }}$ (anraenove sharpose shark)	298-412	28.2-33.2	27.3-28.2	North Edisto and Price Creek
Rissola margineta (Striped cusk-eel)	161	28.7	14.0-27.3	Lower Morth Edisto and Prige Creek
Scomberomorus maculatus (Spanish mackerel)	72-179	$0.4-28.0$	26.4-30.4	North \& South Edisto, Charleston Region
Scophthalmun aquosus (Windowpane)	65-205	$7.6-25.0$	9.4-22.0	North Edisto River
Selene vomer (Lookdown)	32-115	$6.0-33.2$	$16.9-30.1$	North \& South bdisto, Charleston Region
Sphyraene guachencho (Guaguanche)	87	27.6	27.2	North EXisto (Point of Pines)
Sphyras zygaena (Smooth hammerhead)	468	25.4	30.5	Calibogue Sound (Mersh Island)
Squaius acanthias (Spiny dogfish)	916	20.9	8.7	North Edisto (Deveaux Eank)
Steliffer lapceolatus (Star drum)	16-217	0.9-34.4	$8.6-30.5$	Wide distribution
Symphurus plagiasa (Blackeheek tonguefish)	53-256	$0.1-34.2$	$8.6-30.5$	Wide distribution
Syngnathus floridee (Dusky pipefish)	40	25.7	26.7	North fidisto (Dawho fiver)
Symgnathus fugcus (Northern pipefish)	235	33.2	10.4	Bull Bay
Symodus foetenc (Inshore lizerdfish)	52-261	15.4-20.2	25.5-27.4	Charleston Harbor (Hog Island)
Trichiurue lepturus (Athantic cutlassfish)	136-667	0.7-34.4	16.2-30.6	Wide distribution
Trinectes maculatus (Hog choker)	21-152	$<0.1-32.3$	$6.6-30.5$	Wide distribution
Urophycis earlii (Crrolina hake)	112-174	25.0	16.9	North Edisto (Deveaux Bank)
Urophycis floridanus (Southern hake)	155-154	25.0	16.9	Nortk Fdiste (Deveaux liank.)
Urophycis regius (Spotted hake)	57-190	$3.4-29.8$	8.6-22.6	Wide distribution
Vomer setapinnis (Atlantic moonfish)	32-102	$4.8=28.6$	18.5-30.1	North and South Edisto, Cooper Rivers

Trentative identification

Length-frequency relationship. The length-frequency relationship for star drum from all stations is summarized in Table 9. Both young and adults were captured in guantity by our bottom trawls. This is consistent with the findings of Hildebrand end Cable (1934) that star drum appear to dwell at or near the bottom throughout life.

Total lengths for fish obtained from February to June ranged from $38-137 \mathrm{~mm}$, suggesting that the majority of these were young-of-the-year from the previous summer spawning period. These can be traced from February at a modal length of 60 mm , to April at a modal length of 65 mm , and further to June at a modal length of 85 mm . The first recruits from summer spawning appeared in July and ranged from about $18-67 \mathrm{~mm}$ total length. In the same month, overlap was apparent between the new recruits and one-year-olds (approximate total length range $68-117 \mathrm{man}$ with distinct modes of about 50 mm and 100 mm for the two respective year-classes. From July, 1973 to January, 1974, a wide range of total lengths occurred, indicating continued overlapping size distribution between young-of-the-year and one-year-old star drum. One exception occurred in October when a single specimen, with a total length of 217 mm , was collected. In all probability this fish was at least 2 years old.

Our length-frequency results compare favorably with those obtained by Welsh and Breder (1923) for midsummer star drum populations in Winyah Bay, South Carolina, and also are consistent with results obtained by Dahlberg and Odum (1970) for Georgia star drum populations. Star drum spawning occurs in late spring and early summer, with May ond June the principal spaming months on the Atlantic coast. Maturity is reached at

Table 9. Length-frequency relationship for Stellifer lanceolatus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.

```Total Length Interval (mm)```	Month											
	1973											974
	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	,
13-17								1				
18-22						5		2	1			
$23-27$						14		6				
$28-32$						25		11				
$33-37$						17		12	1			
$38-42$					1	14	7	27	12	1	3	4
43-47	2	1	1			32	13	44	38	2	4	6
48-52	4	3	1	1		32	33	43	32	9	15	16
$53-57$	9	11	18	3		28	56	40	67	18	28	15
58-62	13	14	34	2	2	17	58	58	118	27	55	27
$63-67$	11	20	41	9	4	3	23	118	154	55	40	35
$68-72$	11	13	28	13	3	1	2	119	173	83	70	36
$73-77$	9	5	38	25	26	2		104	156	80	15	30
$78-82$	5	18	39	32	4.4	2		85	129	55	127	34
$83-87$	1	3	17	30	58	1		27	'99	21	63	24
88-92		3	11	22	30	10		11	33	12	30	23
93-97			10	10	25	15			17		14	6
98-102			7	4	13	19		1	6	1	7	13
103-107			3	2	5	18		4	3		3	2
108-112			2		2	10		8	2		1	1
113-117			1		2	3	1	3	3		1	6
118-122			4					3	4		1	c
123-127			4			1		5	4			4
128-132			1		1				5			8
133-137			1		1				2		1	1
148-152												1
213-217									1			
Mean Total												
Length (mm)	65	68	75	81	89	60	56	66	65	71	75	76

the age of one year (Welsh and Breder, 2923). The length-frequency data indicate that both young and adults are present in South Carolina estuaries during the spawning season. These results agree with Hildebrand and Cable's (1934) observation that the young are hatched on the same grounds regularly occupied by the adults and that no spawning migration occurs.

Distribution and relative abundance, In the North Edisto River, 14, 347 star drum, with a total weight of 57.7 kg , were caught during the year (Table 20), In this estuary, the species ranked first in numerical abundance, constituting $50.8 \%$ of the total number, and first in weight, representing $33.4 \%$ of the total fish biomass for the year. Star drum were present in this estuary throughout the year, and were most abundant in the estuary during fall and early winter (September December), when $81.5 \%$ of the year's catch occurred (Table 11). The species was not present at any station during every month, but was recorded at one station (Wadmalaw) during 11 months. This fish wes most prevalent at three stations - Yonges Island, Bears Bluff, and Steamboat Creek, which together accounted for $91.2 \%$ of the star drum caught. Of all eight stations, Bears Bluff showed the greatest abundance with $47.4 \%$ of the total obtained for the North Edisto River.

In the South Edisto River, 3,478 star drum, with a total weight of 18.8 kg , were caught during the year (Table l2). In this estuary, the species ranked first in numerical abundance, constituting $34.7 \%$ of the total number, and second in weight, representing $19.2 \%$ of the total fish biomass for the 12-month period. Star drum were most prevalent in the lower reaches of the South Edisto, with little penetration into the upper brackish to freshwater portions of the estuary (Table 13). The two seawardmost stations (Bay Point and Fenwick Island)

Table 10. Total numbers, total weights, rankings in order of abundance by number and weight, and percentage cf total catch represented by 62 fish species captured by bottom trawl in the North Edisto estuary, South Carolina, from February, 1973 through January, 1974.

Species	Relative lumbers			Relative Biomess		
	Total Number Caught	Numerical Fank	Percent of Total Catch	Total Weight (kg)	Biomass Fark	Percent of Total Cateh
Stelifer lanceolatus	14,347	1	50.8	57.7	1	33.4
Avchoa mitchilp	5,216	2	18.5	8.6	4	5.0
Leiostomus xanthurun	3,378	3	12.0	23.9	3	13.8
M1aropenon undulatug	2,779	4	9.8	28.1	2	16.3
Cymoscion regalis	596	5	2.1	7.9	5	4.6
Urophycis regius	483	6	2.7	4.8	8	2.8
Bairdiella chrysura	415	7	1.5	7.3	7	4.2
Symphurus plagiusa	101	8	0.4	1.6	12	1.0
mrichiurus lepturus	73	9	0.3	3.5	10	2.0
Alosa nestivalis	66	10	0.2	0.1	36	0.1
Arius felis	63	11	0.2	7.4	6	4.3
Trinectes meculatus	63	11	0.2	1.6	13	0.9
Peprilue alepidotus	60	12	0.2	0.9	17	0.5
Chloroscombrug chrysurus	59	13	0.2	0.3	26	0.2
Iarimus fasciatus	50	14	$0 . ?$	0.4	22	0.3
Breyoortig tyranmus	49	15	0.2	0.9	20	0.5
Menticirrhus americanus	47	16	0.2	1.2	24	0.1
Anchoa hepsetus	39	17	0.1	0.2	28	0.2
yomer setapingis	29	18	0.1	0.2	34	0.1
Cheetodipterus faber	29	19	0.1	0.3	25	$0 . ?$
Opisthonema ogivum	26	20	0.1	0.2	30	0.1
Cymoseion nothus	23	21	0.1	0.9	19	0.5
Opsanus tau	19	22	0.1	0.3	24	0.2
Bagre marinus	15	23	0.1	0.2	32	0.3
Paralichthys dentatus	15	23	0.1	1.1	15	0.6
Peorilus triacanthus	15	23	0.1	$<0.1$	39	0.1
Hypsoblennius hertzi	13	$2{ }^{2}$	0.1	0.1	40	0.1
Priongtus tribulus *	12	25	$<0.1$	$<0.1$	51	$<2.1$
Astroscopus y-Eraecum	11	26	$<0.1$	0.1	46	$<0.1$
Dorobome petenense	20	2	$<0.1$	0.1	46	$<0.1$
Selene yomer	9	28	$<0.1$	0.1	41	0.1
Etropus crossotids	8	29	$<0.1$	0.1	45	$<0.1$

Frentative jãentrication

Table 10.
(Continued.)

Species	Relative Numbers			Relative Biomass		
	Total Nunber Caught	Numerical Rank	Fercent of Total Catch	Total Weight. (kg)	Biomass Rank	Percent of Total Catch
Scophthalmus aquosus	8	29	$<0.3$	0.1	42	0.1
Caranx hippos	7	30	$<0.1$	0.2	35	0.1
Pomatomus saltatrix	6	31	$<0.1$	0.4	23	0.2
Scomberomarus maculatus	6	31	$<0.1$	0.2	33	0.1
Urophycis earili	6	32	$<0.1$	0.2	29	0.1
Alosa sepidissima	5	32	$<0.1$	0.1	43	0.1
Centropristis striate	5	32	<0.1	0.1	44	$<0.1$
Gymura micrura	3	33	$<0.1$	4.3	9	2.5
Paralichthys fethostigme	3	33	$<0.1$	0.8	21	0.4
Urophyeis floridenus	3	33	$<0.1$	0.1	38	0.1
Ancylopsetts gusdrocelinta	2	34	$<0.1$	$<0.1$	55	$<0.1$
Desyritis sabina	2	34	$<0.1$	0.9	18	0.5
Gobjesox strumosus	2	34	$<0.1$	$<0.1$	54	$<0.1$
Gobiosoma bosci	?	34	$<0.1$	$<0.1$	53	$<0.1$
Menidia menidis	2	34	$<0.1$	< 0.2	5	$<0.1$
Mongeanthus hispidus	2	34	$<0.1$	$<0 . i$	53	$<0.1$
Mugis curema	2	34	$<0.1$	$<0.1$	52	$<0.1$
Centropristis philgdelohica	1	35	$<0.1$	$<0.1$	53	<0.3
Gobjonellus hastatids	1	35	$<0.1$	$<0.1$	48	$<0.3$
Ictaliarus catios	1	35	$<0.1$	0.2	31	0.1
Ictalurus punctatus	1	35	$<0.1$	0.3	27	0.2
Iegodon rhomboides	1	35	$<0.1$	$<0.1$	50	$<0.1$
Mugil cephaius	1	35	$<0.1$	$<0.1$	53	$<0.1$
Orthopristis chrysoptera	1	35	$<0.1$	$<0.1$	49	< 0.2
Phinoptera bonnsus	1	35	$<0.1$	1.1	16	0.6
Rhizoprionodon terraenovae	1	35	$<0.1$	0.1	37	0.1
RISSOla marginata	1	35	$<0.1$	< 0.1	47	$<0.1$
Sphyraena guachancho	1	35	$<0.3$	$<0.1$	57	$<0.1$
Squalus geanthias	1	35	$<0.1$	3.4	11	1.9
Symanathus floridae	1	35	$<0.1$	$<0.1$	59	$<0.1$
GRAND TOTALS	28,193		100.0	$=172.5$		100.0

Table 11. Numerical abundance of Stellifer lanccolatue collected monthly by bottom trawl at eight stations in the Ncrth Fdisto estuary, South Carolina, from February, $197 \xi$ through January, 1974.

Month	Stations (Frogressing Serward - )								Total   Catch hy Month	Monthly   Contribution   to Total. Catch (\%)
	Yonges [:s] and (EOO1)	$\begin{gathered} \text { Trogoriac } \\ \text { Creek } \\ (\text { EOOC }) \end{gathered}$	Bluff (ECOS)	Drwho Fiver (EON4)	$\begin{aligned} & \text { Ptearmoti } \\ & \text { Creek } \\ & \text { (E005) } \end{aligned}$	$\begin{gathered} \text { Wadmalaw } \\ \text { Isiand } \\ \text { (E006) } \end{gathered}$	Point of Pines (EOOT)	$\begin{aligned} & \text { Bevealix } \\ & \text { Bank } \\ & \text { (E008) } \end{aligned}$		
1973										
February						5		24	29	0.3
March	39		92		3	2			136	0.9
April	345		41	25	112			47	570	1.0
Mry	297		2	10	108	12		2	43j	3.0
dune	49		549	1	46	10		93	748	5.2
July	28			1		12	29	71	81	0.6
August	187		203	26		3	6	59	484	3.4
September	2,130	1	2,110		378	1.41	1	273	5,034	35.c
October	163		32	14	1,450	12	2	295	1,9も8	13.1
November	159		1		790	16	13		979	6.8
December		2	3,760			3		1	4,766	26.0
1974										
Jenuary			$?$	1	$\ldots$	28		35	$\underline{12 \hat{2}}$	0.8
Total Catch										
Station Contributi to Total Catch (\%)	Station Contribution									300
Grand Total (All stations and months combined) $=14,348$										

Table 12. Total numbers, total weights, rarkings in order of abundance by muber and weight, and percentage of total catch represented by 47 fish species captured by bottom trawl in the South Edisto estuary, South Carolina, fron February, 1973 through January, 1974.

Species	Relative Numbers			Relative Biomass		
	Total   Number   Caught	Numerical Rank	Percent of Total Catch	Total Weight (kg)	Biomass Rank	```Percent of Total Catch```
Stellifer lanceolatus	3,478	1.	34.7	18.8	2	19.2
Micronogon undulatus	1,623	2	16.2	9.6	3	9.8
Ictalurus eatus	1,380	3	13.8	26.2	1	26.8
Anchos mitchilli	1,155	4	11.5	2.0	12	2.0
chlocoseomorne chrysurus	491	5	4.9	2.9	7	2.9
Uropbrais regiug	461	6	4.6	5.6	6	3.8
Cynoscion regalis	316	7	3.2	7.1	4	7.2
Leiostomus xanthurus	223	8	2.2	1.4	1.4	1.4
Trinectes maculatus	204	9	2.0	1.0	16	1.0
Symphurus plagiuse	147	10	1.5	2.6	9	2.7
Bajrdiella chrysura	100	11	1.0	2.6	10	2.6
Brevoortig tyrannus	99	12	1.0	2.7	8	2.8
Anchoa hepsetus	79	13	0.8	0.7	18	0.7
Ictelurus punctatus	61	$1{ }^{1 / 4}$	0.6	1.9	13	2.0
Sorrone saxetilis	32	15	0.3	0.2	22	0.2
Bagre marinus	28	16	0.3	0.1	28	0.1
Alose sapidissima	19	17	0.2	0.1	32	2.1
Menticirchus americanus	17	18	0.2	0.2	20	0.2
Aloga aestivalis	16	19	0.2	$<0.1$	36	$<0.1$
Lepiopsteva osprus	1\%	20	0.3	2.0	11	2.0
Acioerser oxychynchus	13	21	0.1	6.5	5	6.6
Vomer setaginnis	11	22	0.1	$<0.1$	35	$<0.1$
Scomberomorus maculatus	7	23	0.1	0.2	21	0.2
Arius felis	6	24	0.1	0.3	19	0.3
Lrimus fasciatus	6	24	0.1	0.1	31	0.1
Selene Yomer	6	24	0.1	$<0.1$	38	$<0.1$
trichiurus lepturus	5	25	0.1	0.2	23	0.2
Citharichthys spilonterus	4	26	$<0.1$	0.1	29	0.1
Etropus crossotus	4	26	$<0.1$	$<0.1$	37	$<0.1$
opisthonems oglinum	4	26	$<0.1$	0.1	26	0.1
Monacanthus hispidus	3	27	$<0.1$	$<0.1$	44	$<0.1$

Taple 12. (Continued.)

*Tentative identification.

Table 13. Numerical abundance of Steliffer lanceolatus coilected monthly by bottom travl at four stations in the South Edisto estuary, South Carolina, from February, 1973 through January, 1974.

together accounted for $94.7 \%$ of the star drum caught in the South
Edisto. The species was absent throughout the year at Snuggedy
Swamp, the station furthest upriver above the freshwater line. From
midwinter through summer, this fish was restricted to the mouth of
the river (Bay Point), with no appreciable penetration into the estuary,
Star drum were most abundant in the estuary during mid-fall to
early winter (October - December), when $86.0 \%$ of the year's catch
occurred.
In the Cooper River, 2,727 star drum, with a total weight of 11.3 kg , were caught during the year (Table 14). In this estuary, the species ranked first in numerical abundance, constituting $26.0 \%$ of the total number, and fourth in weight, representing $8.2 \%$ of the total fish biomass for the l2-month period. This fish was most numerous in the lower third of the estuary (at the mouth of the Cooper River and at Cummings Point), whick accounted for $98.3 \%$ of the star drum caught in the Cooper River. Star drum were completely absent throughout the year at "The Tee", the station furthest upriver above the freshwater line. This species was most abundant in the Cooper River estuary during September and October, when $57.3 \%$ of the year's catch occurred (Table 15). No Cooper River station had star drum present during all months. This fish was absent from all catches during February, March, and June in contrast to the North and South Edisto, where star drum were present during those same months.

Distribution and relative abundance of star drum at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are summarized in Table 16 .

Table 24. Total numbers, total weights, rankings in order of abundance by number and weight, and percentage of total cateh represerted by 57 fish species captured by bottom trawl in the Cooper River estuary, South Carolina, from February, 1973 through January, $197 \mathrm{l}_{\mathrm{i}}$.

Species	Relative Numbers			Relative Biomass		
	Total   Number   Caught	Numerical Mank	```Percent of Total Catch```	Total Weight ( kg )	Bjomass Rank	```Percent of Total Catch```
Stellifer lanceolatus	2,727	1	26.0	i1. 3	4	8.2
Micropogon undulatus	2,512	$?$	24.0	41.4	,	30.3
Anchot mitchilij	1,481	3	14.1	2.6	14	1.9
Brevoortia tyranmus	583	4	5.6	3.0	12	2.2
Urophycis regius	582	5	5.6	6.1	7	4.4
Cynoscion regalis	494	6	4.7	6.6	6	4.8
Eeiostomus xanthurus	381	7	3.6	3.1	10	2.3
Alosa aestivalis	373	8	3.6	1.4	16	1.0
Istelurus catus	304	9	2.9	15.6	2	11.4
Dorosoma petenense	286	10	2.8	0.7	19	0.5
Beirdielda chrysura	279	11	2.7	9.3	5	6.8
Pepr11us alepidotus	55	1.7	0.5	0.7	18	0.5
Ictalurua nebulosus	53	13	0.5	2.6	15	1.9
Trinectes maculatus	52	14	0.5	0.3	26	0.2
Opistionema oglinum	45	15	0.4	0.1	32	0.1
Symphurus plagiusa	38	16	0.4	0.6	22	0.4
Anchor hepsetus	32	17	0.3	0.3	27	0.2
Anguilin rostrata	32	17	0.3	3.7	8	2.7
Triquincus lepturus	25	18	0.2	0.6	21	0.5
0psanua tsu	24	19	0.2	3.1	11	2.3
Istalurus punctatus	15	20	0.1	1.0	17	0.8
Cargnx hippos	12	21	0.1	0.1	31	0.1
Paralichthys 2 ethostigms	11	22	0.1	3.0	13	2.2
Lepisosteus ossseus	7	23	0.1	13.3	3	9.8
Vomer setapinnis	7	23	0.1	$<0.1$	40	$<0.1$
Selcne vamer	6	24	0.1	0.1	33	0.1
Pomgtomus seltatrix	5	25	0.1	0.6	20	0.5
Alosg sapidiasima	4	26	$<0.1$	0.1	33	0.1
Syncsicion nebulosus	4	26	$<0.1$	0.5	23	0.3
Pargieichthys dentatus	4	26	$<0.1$	0.2	28	0.1
Pogonias cromis	4	26	$<0.1$	3.3	9	2.4
Arius felis.	3	27	< 0.1	0.4	24	0.3
centropristis phidadelohica	3	27	$<0.1$	0.1	34	0.1

Tsble 14. (Continued,)

Species	Relative Tumbers			Relative Biomass		
		$\begin{aligned} & \text { Numerical } \\ & \text { Rark } \end{aligned}$	```Percent of Totai Catch```	Total Weight (kg)	$\begin{gathered} \text { Eiomass } \\ \text { Rank } \end{gathered}$	Fercent of 'Total Catch
Chiorosconbrus chrysurus	3	27	$<0.1$	$<0.1$	43	$<0.1$
Etropus crossotus	3	27	$<0.1$	$<0.1$	44	$<0.1$
Menticirrhus americands	3	27	$<0.1$	0.1	30	0.1
Perca flavescens	3	27	$<0.1$	$<0.1$	42	$<0.1$
Begre marinus	2	28	$<0.1$	< 0.1	37	$<0.1$
Citharichthys spilopterus:	2	28	$<0.1$	$<0.1$	49	$<0.1$
Hypsoblennius hentzi	2	28	$<0.1$	$<0.1$	47	$<0.1$
Ictalurus platycephalus	2	28	$<0.1$	0.3	25	0.2
Peprilus triacanthus	2	28	$<0.1$	0.1	35	$<0.1$
Ancylopsetta quadrocellinta	1	29	< 0.1	$<0.1$	51	$<0.1$
Centropriskis striata	1	29	$<0.1$	$<0.1$	41	$<0.1$
Chnetodipterus faber	1	29	< 0.1	$<0.1$	38	$<0.1$
Dasyatis sabina	1	29	$<0.1$	0.2	29	$<0.1$
Derosoma cepedianum	1	29	$<0.1$	$<0.1$	16	$<0.1$
Sobiesox stsumogua	1	29	$<0.1$	$<0.1$	50	$<0.1$
Gobionelius boleosome	1	29	$<0.1$	$<0.1$	52	$<0.1$
Ietalurus melas	1	29	$<0.1$	0.1	36	$<0.1$
Ietalurus natelis	1	29	$<0.1$	$<0.1$	47	$<0.1$
Lagocephal us laevigatus	1	29	$<0.1$	$<0.3$	12	< 0.1
Lepomis auritus	1	29	$<0.1$	$<0.1$	48	$<0.1$
Lutjanus griseus	1	29	$<0.1$	$<0.1$	45	$<0.1$
Morone saxatilis	1	29	<0.1	$<0.1$	39	$<0.1$
Prionotus tribulus *	1	29	$<0.1$	$<0.1$	53	$<0.1$
Scomberomorus maculatus	1	29	$<0.1$	$<0.1$	38	$<\mathrm{c} .1$
GRAND TOTALS	0,480		1.00 .0	$<1.36 .6$		100.0

*Mertative 1dentification.

Table 15. Numerical abondance of Stellifer lanceolatus collected monthly by botom trawl at five stations in the cooper fiver estuary, South Carolina, from February, 1973 through January, 1974.


Table 16. Numerical abundance of Stellifer lanceolatus collected quarterly by botom trawl at 16 stations across the south Carolina coastal mone from February, 1973 through Jenuary, 1974

Station	$\begin{aligned} & \text { Spring } \\ & \text { (April, 1973) } \end{aligned}$	$\frac{\text { Trawl Catch }}{\text { Sunmer }}$	Son (Numbers) (October, 1973)	$\frac{\text { Winter }}{(\text { Januery, } 1974 \text { ) }}$	Total Caten by Stetion	Station Contribution to Total Catch (\%)
Northern Region						
Winyah Bay (Y001)		12	?	1	15	0.6
South Sarntee (S001)			18		18	0.8
Bull bay ( $\mathrm{BOO}_{3}$ )	178	63	25		266	11.5
Price Creek (BOO2)			3		3	0.1
Charleston Region						
Inlet Creek ( $\mathrm{BOOL}_{\text {) }}$					0	0.0
Nowell Creek (W001)					0	0.0
Fort Johnson (J001)				2	7	0.1
Hog Island (J002)			7		7	0.3
Ashley River (K001)	3		435	102	540	23.5
Southern Resion						
Stono River (rool)	2	31	238		271.	11..
Ashepoo River (H002)			119		129	5.1
Rock Creek (HOO3)	7	83		6	96	4.1
Whale Eranch (H001)			9		9	0.4
Port Royal Sound (Pooz)		623			623	26.9
Colleton River ( POOL )			26		26	$\therefore .!$
Celibogue Sound (G001)		25.7	60	--_--	32?	$\underline{1}$
Total Catch by Season	190:	1.069	QL\%	:	2,3\%	
Beason Contribution to Total Cetch (\%)	¢ 2	36.2	3 C .7	4.3		100.0



## Anchoa mitchilli (Bay Anchovy)

The bay anchovy (Anchoa mitchilli) is the most abundant engraulid in South Carolina estuaries (Table 7). This schooling fish ranges from Massachusetts to Texas (Smith, 1907; Hildebrand and Schraeder, 1928) and as fiar south as Yucatan, Mexico (Hildebrand, 1963). The species was previously reported in South Carolina by Fowler (1945), Lunz and Schwartz (1969), and Cupka (1972), This engraulid was present in some life stage in every month and in all major estuaries or coastal regions of South Carolina (Sables 5 and 17). Miller and Jorgenson (1969) and Dahlberg and Odum (1970) also found bay anchovy abundant throughout the year along Georgia beaches and marshes.

Total catch. During the year $12,07^{4}$ bay anchovy, with a total weight of 19.4 kg , were obtained at all stations combined (Table 7). This species ranked second in numerical abundance statewide, constituting $19.3 \%$ of the total number, and seventh in weight, representing $3.5 \%$ of the total fish biomass for the 12-month period.

Total length, temperature, and salinity ranges. Bay anchovy collected in the estuaries during the year had a total length range of 22-88mand occurred over a bottom salinity range of <0.1-34.2\% (Table 8) and a bottom temperature range of $10.3-31.4 \mathrm{C}$ (Table 8).

Length-frequency relationship. The length-frequency relationship for bay anchovy from all stations is sumarized in Table 17. In different parts of its range, spawning may occur from as early as April to as late as September (Hildebrand and Cable, 1930), with peak spawning in the Carolinas occurring about July (Kuntz, 1914). Bay anchovy preaent in

Table 17. Length-frequency relationship for Anchoa mitchilli collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.

	$\frac{\overline{1973}}{F e b}$	Mar.	Apr.	May	June	Month			Oct.	Nov.	Dec.	$\frac{1974}{\operatorname{Jan}}$
						July	Aug.	Sept.				
18-22						1						
23-27							2	1				
28-32			1			13	5	12	2			
33-37	1	2		1		11	14	30	53	4	3	1
38-42	6	15	6			3	31	37	52	8	44	30
43-47	52	22	40	8	14	1	37	29	113	14	60	83
48-52	54	28	44	22	62	28	32	58	1.65	38	68	180
53-57	61	41	65	31	89	67	74	75	193	85	72	160
58-62	30	63	105	34	57	79	59	54	224	113	108	171
63-67	8	89	104	51	37	80	57	37	136	103	61	135
68-72	1	63	91	73	30	80	18	7	68	75	50	91
73-77		19	71	52	35	42	6		36	39	25	34
78-82		7	26	22	18	26	5	2	26	7	7	2
83-87		1	4	7	4	5	1		5	1	1	
88-92				2		1						
98-97												
Mean Total   Length (mm)	50	59	61	64	59	60	53	49	54	60	55	55

South Carolina estuaries during February had a total length range of $33-72 \mathrm{~nm}$, and doubtless were the progeny from previous summer spawning. These young-of-the-year can be traced from a modal length of about 55 mm in February to modal lengths of 65 mm in April and 70 mm in May. As summer and the new spawning season approached, difficulty in separating one-year-old fish from new recruits increased. This extensive overlapping in summer estuarine populations can be attributed, in large part, to the lack of any major migration by the species (Hildebrand, 1963) and also to the long spawning season and the small size attained (Hildebrand and Cable, 1930).

The new young-of-the-year were first recruited into our trawl catches in July, at about $18-47 \mathrm{~mm}$ in total length. These new recruits were probably the offspring of the one-year-old fish already present in South Carolina estuaries. From July through January, 1974, it is difficult to trace the young-of-the-year beyond 42 mm total length since these lengths integrate quickly with the remainder of the population. This bay anchovy length-frequency relationship is similar to that found in Georgia marshes by Miller and Jorgenson (1969).

Distribution and relative abundance. In the North Edisto River, 5,216 bay anchovy, with a total weight of 8.6 kg , were caught during the year (Table 10). In this estuary, the species ranked second in numerical abundance, constituting $28.5 \%$ of the total, and fourth in weight, representing $5.0 \%$ of the total fish biomass for the $12-m o n t h$ period. Bay anchovy were rather evenly distributed in the estuary throughout the year and at all stations (Table 18). Catches were greatest

Table 18. Numerical abundance of Anchos mitchifli collected monthly by bottom trawl at eight stations in the North Fdisto estuary, South Carolina, from February, 1973 through January, 1974.


Grand Total (All stations and months combined) $=5,216$
during January, 1974, but only slightly so, with $15.9 \%$ of the year's total contributed during that month. Although this species was most prevalent at the Dawho River station (accounting for $28.7 \%$ of the year's total catch in the estuary), all stations accounted for appreciable portions of the total catch.

In the South Edisto River, 1,155 bey anchovy, with a total weight of 2.0 kg , were caught during the year (Table 12). In this estuary, the species ranked fourth in numerical abundance, constituting $11.5 \%$ of the total number, and l2th in weight, representing $2.0 \%$ of the total fish biomass for the $12-m o n t h$ period. Bay anchovy were present in the South Edisto estuary throughout the year, with slight peaks occurring during April - May and December (Table 19). Catches decreased with increasing distance upriver (therefore with decreasing salinity), with Bay Point at the estuary mouth contributing $67.4 \%$ of the year's catch, followed by Fenwick Island, Sampson Island, and Snuggedy Swamp at $30.1,2.2$, and $0.5 \%$ of the catch, respectively.

In the Cooper River, 1,481 bay anchovy, with a total weight of 2.6 kg , were caught during the year (Table 14 ). In this estuary, the species ranked third in numerical abundance, constituting $14.1 \%$ of the total number, and l4th in weight, representing $1.9 \%$ of the total fish biomass for the 12 -month period. Bay anchovy were present in the Cooper River estuary throughout the year, but were most abundant in December, when $33.2 \%$ of the year's catch occurred (Table 20). This species was moderately abundant at all stations from Cummings Point (at the mouth of Charleston Harbor), upriver as far as Big Island. However, no bay anchovy managed to penetrate as far as "The Tee", the station furthest upriver above the freshwater line.

Table 19. Numerical Bbundance of Anchoa mitchilli collected monthly bi- bottom trewl at four stations in the South Edisto estuary, South


Month	Stations (Progressing Seaward $\rightarrow$ )				Total Catch by Month	Manthly   Coritribution   to Total Catch (\%)
	$\begin{gathered} \text { Snuggedy } \\ \text { Gwamp } \\ \text { (DOOL) } \end{gathered}$	$\begin{aligned} & \text { Sampson } \\ & \text { Island } \\ & \text { (D002) } \end{aligned}$	$\begin{aligned} & \text { Fenwick } \\ & \text { Islard } \\ & (0 \operatorname{co3}) \end{aligned}$	Bay toint (DOO4)		
1873						
February				33	33	2.9
March			6	40	46	4.0
April			8	285	293	25.4
May		2	59	158	21.7	19.0
June	1	5	6	8	20	1.8
July			3		3	0.3
August	3	7	87		97	8.4
September		1	9	6	16	1.4
Qctober		1	17	73	91	7.9
November		$\varepsilon$	95	6	109	9.5
December	1	1	24	123	149	12.9
$\frac{1974}{\text { Jenuery }}$			33	$4 \epsilon$	79	6.9
Total Catch by Station	5	25	347	778	-,155	
Station Cortribution to Total Cateh (\%)	0.5	2.2	30.1	67.4		100.0
Grand Total (All stations and months combined) $=1,1.55$						

Table 20. Numerical abundance of Anchoa mitchilli coilected monthly by bottom urawl at five stations in the ooper ミiver estiary, South Carolina, from February, 1973 through January, 1974.

Month	Stations (Progressimg Seaward $\rightarrow$ )					Total Ceteh by Nonth	Morithly   Contribution to Total Catch (\%)
	$\begin{aligned} & \text { The } \\ & \text { 'Tee } \\ & \text { (cool) } \end{aligned}$	$\begin{aligned} & \text { Big } \\ & \text { Island } \\ & \text { (coo2) } \end{aligned}$	North Charles $(0003)$	Moutt. of Cooper (C004)	$\begin{aligned} & \text { Cumings } \\ & \text { Point } \\ & \text { (Jo03) } \end{aligned}$		
1973							
February			14	33		1.7	3.2
March			7	3		10	0.7
Aprid				1		1	0.1
May		66	14	15	110	205	13.8
June		15	12	1	4	$3{ }^{2}$	2.1
July			21	4	59	84	5.6
August		2	6	5	11	$2^{4}$	1.6
September		2	74	25	44	24.5	9.8
October			75	1	42	118	7.9
November		38	55	j	88	1814	12.4
December		187	194	7	104	$49 ?$	33.2
$1974$							
Total Cateh							
Station Contribution to Total Catch (\$)	0.0	21.0	35.4	8.1	35.4		100.0
Grand Total (All stat	nths	ned) $=$					

Distribution and relative abundance of bay anchovy at 16 additional stations trawled quarterly in the northern, Charleston, and southern regions of the state ere sumarized in Table 21.

Micropogon undulatus (Atlantic Croaker)

The Atiantic croaker (Micropogon undulatus) is known from Massachusetts to Texas (Welsh and Breder, 1923; Hildebrand and Schroeder, 1928; Hildebrand and Cable, 1930) and is one of the most common species of marine fishes present in South Carolina coastal waters. Some life history stage of this sciaenid is present in every month and in every major estuary or coastal region of the state (Bearden, 1964). The Atlentic croaker is utilized by South Carolina's inshore fishermen as a source of recreation and as a food fish.

Total catch. During the year, 9,030 croaker, with a total weight of 95.5 kg , were obtained at all stations combined (Table 7). This species ranked third in numerical abundance statewide, constituting 14. $4 \%$ of the total number, and second in weight, representing $17.4 \%$ of the total fish biomass for the l2-month period.

Total length, temperature, and aslinity ranges. Croaker collected in the estuaries during the year had a total length range of $20-293 \mathrm{~mm}$ and occurred over a bottom salinity range of $<0.1-34.2^{\circ} / 00$ and a bottom temperature range of $9.2-31.4 \mathrm{C}$ (Table 8).

Length-frequency relationship. The length-frequency relationship for Atlantic croaker from all stations is summarized in Table 22. At various locations throughout its range, Atlantic croaker spawn from August to April, with the majority of spawning occurring between

Table 21. Numerical abundance of Anchon mitchilli collected quarterly by botton traw et le stations across the South Caroiina coastal zone from February, 1973 trrough January, 1974.

Station	Trawl Catck by Season (Numbers)				Total Cateh by Station	Station Contribution to Total Cateh (i)
	$\begin{gathered} \hline \text { Spring } \\ \text { (April, 1973) } \end{gathered}$	$\begin{gathered} \text { Sumer } \\ (\mathrm{duly}, 1973) \end{gathered}$	$\begin{gathered} \text { Fall } \\ \text { (october, 1973) } \end{gathered}$	$\begin{gathered} \text { Winter } \\ \text { (January, 1974) } \end{gathered}$		
Northern Region						
Winyan Eay (Y001)	5	7	3	3	18	3.1
South Santee (5001)	6	1	138	104	249	43.0
Buil Bay (B003)	174		41	144	259	44.6
Price Creek (8002)	51		1	2	54	9.3
Charleston Region						
Inlet Creek ( BOOL )	27	10	329	3	369	18.5
Nowell Creek (wool)	143	59	453	4	659	33.1
Fort Johnson (J001)	11	43	44	23	121	6.1
Hog Island (JOO2)	170	72	178	45	465	23.4
Ashley River (K001)	83	14	135	144	376	18.9
Southern flegion						
Stono River (F001)	41	1	6	38	86	5.2
Ashepoo River (HOO2)	11	4	56	10	81	4.9
Rock Creek ( H 003 )	321	73	154	28	576	34.7
Whale Branch (H001)	161	9	46	75	291	17.5
Port Royal Sound (P002)	10	10		3	23	1.4
Colleton River (POO1)	1		1	10	12	0.7
Callbogue Sound (GOOL)	266	169	135	21	59	35.6
Total Catch						
by Sesson	1,481	472	1,720	557	4,230	
Season Contribution to Total Catch (\%)	35.0	21.2	40.7	13.2		100.0
Grand Total (All stations and seasons combined) $=4,230$						

Table 22. Length-frequency relationship for Micropogon undulatus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.

Total	Month											
Length	1973											1974
$\begin{gathered} \text { Interval } \\ (\mathbb{m}) \end{gathered}$	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.


13-17		1										
18-22		1	4									1
23-27			14									
28-32	2		19	4		1						
33-37	10	5	21	10	1	2						5
$38-42$	7	2	26	16	3	1						19
43-47	4	3	14	17	10					5		13
48-52	3	4	26	17	5					5	3	14
53-57	6	6	29	17	17	7	2			2	3	11
58-62	13	5	70	11	15	12	1				11	11
63-67	8	6	55	18	28	26	4			1	9	6
68-72	10	7	57	22	40	49	15		1	4	6	13
$73-77$	10	4	31	15	58	89	11		1		3	8
78-82	1	5	17	26	42	105	27	3	3		6	3
83-87		1	18	19	61	77	28	5	6	1	2	3
$88-92$		2	10	8	37	67	18	12	9		2	2
93-97			4	4	20	71	18	21	10			2
98-102		1	7	3	16	81	18	18	13		2	
103-107			5	3	5	59	13	25	15	6	1	
108-112			4	2	5	64	12	18	11	3	8	1
113-117	2		5		3	33	15	18	16	4	6	2
118-122	2		1		5	10	15	14	10	3	10	
123-127	1	1	1		1	5	6	8	16	4	14	1
128-132	1		1			6	4	17	6	7	6	6
133-137	1				1	4	4	21	16	4	3	3
138-142		5	4			8	8	24	15	2	5	1
143-147	3		10			3		15	7	1	1	4
148-152	1	1	5			6	1	21	3	1	3	
153-157			9			6	4	5	5	1	1	4
158-162	3	1	8			5	2	7	4		2	
163-167			3			2	1		4		1	1
168-172	1	2	5			1	1		4			1
173-177		1	4			1	1		2			4
178-182	1							1	1			4

Table 22. (Continued.)

Total Length Interval (nm)	$\frac{1973}{\text { Feb. }}$	Mar.	Apr.	May	June	Month		Sept.	Oct.	Nov .	Dec.	$\frac{1974}{\operatorname{Jan} .}$
						July	Aug.					
183-187	1		2								2	4
188-192			1								1	6
193-197											1	3
198-202												5
203-207												8
208-212												4
213-217												3
218-222												2
223-227												1
228-232												2
233-237												
238-242												1
243-247												3
248-252											1	4
253-257											1	3
258-262											1	3
263-267												
268-272												
273-277												
278-282												
283-287											1	
$288-292$											1	
293-297												1
Mean Total   Length (mm)	71	76	71	65	79	92	100	121	121	101	110	113

November and February (Welsh and Breder, 1923; Hildebrand and Schroeder, 1928; Hildebrand and Cable, 1930; Suttkus, 1954; Hansen, 1969). Spawning takes place in South Carolina coastal waters from October through January (Bearden, 1964).

Newly-recruited croaker from fall-early winter spawning were abundant in South Carolina estuaries as early as January (Table 22). These young fish, with a total length range of about $13-82 \mathrm{~mm}$, dominated the catches during February and March. In addition, some larger croaker, at 113 - 187 mm and in all probability one-year-old fish, were also present. During this period, however, most adults remain outside the estuaries in coastal waters, where spawning has recently taken place (Bearden, 1964 ), thus probably sccounting for the low numbers of older fish collected. Total lengths for croaker captured in April ranged from 18 - 192 mm with two distinguishable modes (at 60 and 145 mm ), suggesting an overlapping presence of young-of-the-year (total length range of ebout $18-122 \mathrm{~mm}$ ) and one-year-old fish (total length range of about $123-192 \mathrm{~mm}$ ). From April through October the catches were once more dominated by young-of-the-year which originated in the 1972-1973 winter spawning. These young-of-the-year can be further traced to July at a modal length of 80 mm . Migration of larger adult Atlantic croaker out of the estuary once more in late summer and early fall is typical of the species (Bearden, 1964; Hansen, 1969) and may account for the low numbers caught at that time. These smaller catches of larger fish may also be due at least in part to escapement from the small 6-m (20-ft) otter trawl.

The wide range of total lengths, from $18-297 \mathrm{~mm}$, occurring in December, 1973 and January, 1974 almost certainly indicates an overlapping size distribution of the young-of-the-year, one-, and two-year-old fish.

These length-frequency results compare favorably with those previoualy obtained by Bearden (1964) for South Carolina croaker populations, by Hildebrand and Cable (1930) for North Carolina populations, and by Suttkus (1954) for Louisiana populations.

Distribution and relative abundance. In the North Edisto River, 2,779 Atlantic croaker, with a total weight of 28.1 kg , were caught during the year (Table 10). In this estuary, the species ranked fourth in numerical abundance, constituting $9.8 \%$ of the total number, and second in weight, representing $16.3 \%$ of the total fish biomess for the l2-month period. Croaker were generally distributed throughout the estuary, but were most prevalent at two adjacent stations, Steamboat Creek and Wadmalaw, which together accounted for $70.4 \%$ of this species caught in the North Edisto. Croaker were present in the estuary throughout the year and were most abundent in the estuary during June and July, when $85.7 \%$ of the year's catch occurred (Table 23). However, no North Edisto station had this fish present during all months and in Toogoodoo Creek only eight croaker were caught, with all of those occurring during a single month.

In the South Edisto River, 1,623 croaker, with a total weight of 9.6 kg , were caught during the year (Table 12). In this estuary, the species ranked second in numerical abundance, constituting $16.2 \%$ of the total number, and third in weight, representing $9.8 \%$ of the total fish biomass for the $12-m o n t h$ period. Croaker were present in the estuary throughout the year, but were most abundant in December, when $21.0 \%$ of the year's catch occurred (Table 24). At least $10.0 \%$ of the year's catch occurred in each of five separate months, indicating a relatively even seasonal distribution. No South Edisto station had croaker present

Table 23. Numericai abundance of Nicropogon undulatus collected monthly by bottom trawl at eight stations in the North Edisto estuary, South Carolina, from February, 1973 tirough January, 1974.

Month	Yo_ Stations (Frotressing Eenward + )								Totat Catch, by Month	Monthiy   Contribation   to Total Catch (\%)
	Yonges Island (f.001)	$\begin{gathered} \text { Tuogoodoc } \\ \text { Creek } \\ (\text { EDO }) \end{gathered}$	Bears R] $u f$ if (E003)	Dawho River (E004)	$\begin{gathered} \text { Steambort } \\ \text { Creek } \\ \text { (E005) } \end{gathered}$	$\begin{gathered} \text { Wadmeiaw } \\ \text { Island } \\ \text { (EOO6) } \end{gathered}$	Foint of J'ines (E.007)	$\begin{gathered} \text { Leveaux } \\ \text { Bank } \\ \text { (E008) } \end{gathered}$		
1973										
February				1		1			2	0.1
March	1							1	2	0.1
April	2		3	7	8	1			21	0.8
May	22			30	18				70	2.5
June	117		180	7	1.,318	2	1		1,625	58.5
July	94	8		121	244	210	71	8	756	27.2
August	27			7			56	3	93	3.3
September	9		15		17	124	15	2	182	6.5
October	2			3	10			$?$	?	0.8
November	1			1					2	0.1
December						2		1	3	0.1
1974										
January	-	$\cdots$	$\cdots$		$\xrightarrow{2}$	.	-	-	1	$\frac{0.1}{\text { C. }}$
Total Catch										
Station Costribution										103.0
Grand Total (Ald st	tis com	$)=2,779$								

Table 24. Numerical abundance of Micropogon undulatus collected monthly by botton trawl at four stations in the South Fifiste estuary, South Carolina, from February, 1973 through Januery, 2974.

Month	Stations (Progressing Seaward $\rightarrow$ )				Total. Catch by Montr:	Monthiy Contribu:ion To Total Catch (\%)
	Snuggedy Swame (D001)	$\begin{gathered} \text { Sampscn } \\ \text { Isiana } \\ \text { (D002) } \end{gathered}$	$\begin{gathered} \text { F'enwick } \\ \text { Island } \\ (D 003) \end{gathered}$	$\begin{aligned} & \text { Bay } \\ & \text { Point } \\ & \text { (D004) } \end{aligned}$		
1973						
February					0	0.0
March			2		2	0.1
April			115	8	123	7.6
May		33	197		230	14.1
June	19	163	54	43	279	17.2
July		19	70		89	5.5
August		165	1		$: 66$	10.2
September		63	115	33	211	13.0
October		3	50	15	68	4.2
November		34	18		52	3.2
December	4	260	78		342	23.0
1974						
Jenuary	-	18	46	-	64	3.9
Total Cateh by Station	23	758	746	99	1,623	
Station Contribution to Total Cateh (\%)	1.4	46.6	45.9	6.1		100.0
Grand Total (All stations	hs combine					

throughout all montbs, although the species was found at Fenwick Island during 11 months of the year. The species favored the middle reaches of the South Edisto, with Sampson Island and Fenwick Island stations together accounting for $92.5 \%$ of the croaker found in the estuary during the year. At times, this fish was found at the river mouth (Bay Point). However, gbundance at this location was lower than at adjacent stations upriver. Croaker were generally absent from the station furthest upriver above the freshwater line, but in two months (June and December) the species was able to penetrate upriver to Snuggedy Swamp, a typically freshwater habitat.

In the Cooper River, 2,512 croaker, with a total weight of 41.4 kg , were caught during the year (Table 14). In this estuary, the species ranked secona in numerical abundance, constituting $24.0 \%$ of the total number, and first in weight, representing $30.3 \%$ of the total fish biomass for the $12-m o n t h$ period. Croaker were most prevalent in the seaward third of the estuary, at the mouth of the Cooper River and at Cumings Point, which together accounted for $91.2 \%$ of this species calght in the Cooper River. Like the South Edisto, few croaker were able to penetrate to the stations furthest upriver (Big Island and "The Tee") in brackish to freshwater. The species was present in every month except November, when seaward migration takes place (Bearden, 1964). This fish was most abundant in the Cooper River in April, when $44.6 \%$ of the year's catch occurred (Table 25). No Cooper River station had croaker present during all months..

Distribution and relative abundance of Atlantic croaker at 16
additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are sumarized in Table 26.

Table 25. Numerical abundance of kicropogon undulatus colvected monthiق by bictom trawl at five stations ir. the Cooper fiver estary, Soutt. Carolina, from Febriary, 1973 through Jankary, 197 !. .

 zure from Fctruary, don thecubidatany, -97a

Station	$\qquad$	Trawl_Catch (July, 197 )	$\frac{\text { an (Numters) }}{\text { Fali }}$	$\frac{\text { Winter }}{\text { (Jenuary, 1974) }}$	Total Cateh by Station	Station Contribution to Total Catct (\%)
Northern Region						
Winyeh Bey (Y001)	6	321	2	1.3	372	93.9
South Santee (S001)		4		1	5	1.3
Bull Bay (B003)	3	8			16	4.0
Price Creek (BOO2)		1.	1	1	3	0.8
Cherleston Region						
Inlet Greek ( $\mathrm{BOOL}^{\text {) }}$		16			16	3.1
Nowell Creek (WOOL)	7				7	2,4
Fort Johnson (J001)	1	231	2		234	45.4
Hog Islend (J002)	13	3	1		17	3.3
Ashley River (K001)	217	1	7	36	241	46.8
Southern Region						
Stono River (F001)	167	198	2		367	29.3
Ashepoo River (H002)	6	: 10	1	9	126	10.1
Roek Creek (6003)	112	50	12	10	184	14.8
Whale Branch (HOO])	72	3			75	6.0
Port Royal Sound (P002)		9			9	0.7
Colleton River (POOL)			26		16	:, 3
Caltbogue Sound (0001)	1.	463	2	-	466	37.5
Total Cetch by ieason	610	1,118	$i ; 6$	80	2,154	
Geason Contribution to Totel Sateh (\%)	28.3	65.8	2.2	3.7		100.0

Grand Total (All stations and seasons combined) $=2,154$
$\qquad$
$\qquad$

## Leiostomus xanthurus (Spot)

The spot (Leiostomus xanthurus) is one of the abundant small sciaenids and is present in some life stage in every month and in every major estuary or coastal region of South Carolina (Tables 5 and 27). This species is distributed along the Atlentic and Gulf coasts from Massachusetts to Texas (Welsh and Breder, 1923; Hildebrand and Schroeder, 1928; Hildebrand and Cable, 1930) and as far south as the Bay of Campeche (Springer and Eullis, 1956; Dawson, 1958). Throughout its range, spot is an integral part of the comercial fishing industry and is also an established favorite of sport fishermen.

Total catch. During the year, 5,347 spot, with a total weight of 57.1 kg , were obtained at all stations combined (Table 7). This species ranked fourth in numerical abundance statewide, constituting $8.5 \%$ of the total number, and third in weight, representing $10.4 \%$ of the total fish biomass for the 12-month period.

Total length, temperature, and salinity ranges. Spot collected in the estuaries during the year had a total length range of $22-212 \mathrm{~mm}$ and occurred over a bottom salinity range of $0.1-34.4 \%$ and a bottom temperature range of 11.6 - 31.4 C (Table 8). This salinity range corresponds closely to the $4.5-36.0^{\circ} / 00$ reported for spot in South Carolina waters by Dawson (1958). Although spot are euryhaline (Gunter, 1956), most individuals remain in waters above $10^{\circ} / 00$.

Length-frequency relationship. The length-frequency relationship for spot from all stations is sumarized in Table 27 . Few individuals were present in the estuaries during February and March, 1973. Total

Table 27. Length-frequency relationship for Leiostomus xanthurus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.


Table 27. (Continued.)

Total	Month											
Length Interval (min)	$\frac{1973}{\text { Feb. }}$	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\text { Jan. }}$
173-177												14
178-182		1									3	6
183-187											1	6
188-192											1	4
193-197												2
198-202												1
203-207												1
208-212	1											
Mean Total   Length (mm)	128	248	99	62	77	80	76	97	94	104	144	147

lengths for spot that were captured during that period ranged from $83-212 \mathrm{~mm}$, suggesting that these fish were at least one year of age. During this period most adult spot remain outside estuaries in coastal waters following previous fall spawning (Hildebrand and Schroeder, 1928). This may account in part for the low numbers captured by trawl prior to April.

Postlarval spot were abundant in South Carojina estuaries during February and March, but due to their small size and the fact that the majority have not adopted a benthic mode, they were not susceptible to capture by bottom trawl at that time.

In April the first recruits of the new year-class (originating from the 1972 - 1973 spawning) were apparent and ranged from about $18-52 \mathrm{~mm}$ in total length. At this time, one-year-old spot also appeared in greater abandance in the estuaries, with their presence in April shown by a clearly separated mode and a mean total length of about 140 mm . From April through November, the catches were dominated by young-of-the-year. These are also evident in July at a modal length of 70 mm and October at a modal length of 90 mm . The absence of larger adult fish during late summer and early fall is probably due, at least in part, to avoidance or escapement from the small 6-m (20-ft) trawl. The wide range of total lengths, $88-207 \mathrm{~mm}$, occurring in January, 1974 almost certainly indicates an overlapping size distribution of one-and two-year-old fish.

These length-frequency resuits compare favorably with those obtained previously by Dawson (1958) for South Carolina spot populations. Our length-frequencies for young-of-the-year correspond with those for first-year spot collected with seines in Georgia marshes (Miller and Jorgenson, 2969), and by trawl, seine, and push nets in Tampa Bay, Florida (Springer and Woodburn, 1960).

Distribution and relative abundance. In the North Edisto River, 3,378 spot, with a total weight of 23.9 kg , were caught during the year (Table 10). In this estuary, the species ranked third in numerical abundance, constituting $12.0 \%$ of the total number, and third in weight, representing $13.8 \%$ of the total fish biomass for the 12 -month period. Spot were generally distributed throughout the estuary, but were most prevalent at two stations, Steamboat Creek and Dawho River, which together accounted for $63.9 \%$ of the spot caught in the North Edisto. This fish was most abundant in the estuary during June and July, when $87.8 \%$ of the year's catch occurred (Table 28). No North Edisto station had spot present during all months and the species was absent at all stations in February and March.

In the South Edisto River, 223 spot, with a total weight of 1.4 kg , were caught during the year (Table 12). In this estuary, the species ranked eighth in numerical abundance, constituting $2.2 \%$ of the total number, and fourteenth in weight, representing $1.4 \%$ of the total fish biomass for the 12 -month period. Spot were most prevalent in the lower half of the estuary, at Fenwick Island and Bay Point, which together accounted for $91.9 \%$ of the spot caught in the South Edisto. This fish generally did not penetrate the upper reaches of the estuary and was never taken at Snuggedy Swamp, the station furthest upriver above the freshwater line. The species was most abundant in the estuary during May and June, when $74.9 \%$ of the year's catch occurred (Tarle 29). No South Edisto station had spot present during all months and the species was absent from all catches during February and March.

In the Cooper River, 381 spot, with a total weight of 3.1 kg , were caught during the year (Table 14). In this estuary, the species ranked

Table 28. Numerical abundance of Leiostomus xanthurus collectedmontriy by botor trawl at eight stations in the North Edisto estuary, South Carclina, from February, 1973 through Janüary, 1974 .

Month	Stations (Frogreasjug Seavard *)									
	Yonges 1sland \{EOOL	$\begin{gathered} \text { Coogoodo } \\ \text { Creek } \\ \text { (EOO2) } \end{gathered}$	$\begin{aligned} & \text { Begrs } \\ & \text { Bluff } \\ & \text { (E003) } \end{aligned}$	「मेWh River (2004)	Steamboat Creck (E005)	$\begin{aligned} & \text { Wgdmalaw } \\ & \text { Island } \\ & \text { (E006) } \end{aligned}$	$\begin{gathered} \text { Point of } \\ \text { Pines } \\ (\text { EOOT }) \end{gathered}$	$\begin{gathered} \text { Deveaux } \\ \text { Bank } \\ \text { (E008) } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Catch by } \\ & \text { Month } \end{aligned}$	Monthly Contribution to Total Catch (\%)
1973										
February									0	0.0
Marca									0	0.0
Aprii			1	14	1		$?$		18	0.5
May	12			107	16	19	7		161	4.8
June	174	12	188	3	1,330	21	203	6	1,937	57.3
Suiy	209	42		355	228	15	182		1,031	30.5
August	3	7	1	88			4	1	104	3.1
September	1		4		3	7	8	1	24	0.7
October	71			4	3		1	1	80	2.4
November						1			1	$<0.1$
December						15	3		18	0.5
1974										
January	-	- -	-	2	$\ldots$	-			4	0.2
Station Contribution										
Grand Total (All st	months	$=3,378$								

Table 29. Numerical abundance of Leiostomus xanthurus ccisected menthly by bottom trawl at four stations in the Souti Edisto estaary, Soutt Carolina, from Febriary, 1973 through January, 1974.

seventh in numerical abundance, constituting $3.6 \%$ of the total number, and tenth in weight, representing $2.3 \%$ of the total fish biomass for the 12 -month period. Spot were most numerous in the lower third of the estuary (at the mouth of the Cooper River and at Cummings Point), which accounted for $72.2 \%$ of the spot caught in the Cooper River. This fish was absent from the catches throughout the year at "The Tee", the station furthest upriver above the freshwater line. The species was most abundant in the Cooper River estuary during July and August, when $88.2 \%$ of the year's catch occurred (Table 30). Spot were almost completely absent in the estuary from September through January. No Cooper River station had this fish present during all months. In contrast to the North and South Edisto, at least a few spot were present in this river during February and March. However, the species was absent from all catches during December.

Distribution and relative abundance of spot at additional stations trawled quarterly in the northern, Charleston and southern regions of the state are sumarized in Table 31.

## Cynoscion regalis (Weakfish)

The weakfish (Cynoscion regalis) is one of the larger sciaenids found in South Carolina coastal waters. This species contributes to both sport and commercial fisheries (Lunz and Schwartz, 1969) and can be found along the Atlantic coast of the United States from Massachusetts to Florida (Welsh and Breder, 1923; Hildebrand and Cable, 1934; Guest and Gunter, 1958; Joseph, 1972). The weakfish is abundant in all major estuaries or coastal regions of South Carolina (Table 5). This wideSpread distribution in South Carolina coastal waters has long been noted

Table 30. Numerical abundance of Leiostoms xanthorus collected monthly by botom trawl at five stations in the Cooper River estuary, South Carolina, from February, 1973 throlegh January, 1974.


Table 31. Numerical abundance of Leiostomus xanthurus collectec quarterly by bcttom trawl at le stations across the South Carolina coastal zone from February, 1973 through vanuary, 1974.

Station	Spring (April, 1973)	Trawl Catch   Sumer   (July, 1973)	$\frac{\text { Season (Numbers) }}{\frac{\text { Fell }}{(\text { October }, 1973)}}$	$\begin{gathered} \text { winter } \\ \text { (January, 1974) } \end{gathered}$	Total Cater   by Station	Station Contribution to Total Catch ( ${ }_{N}^{N}$ )
Northern Region						
Winyah Bay (YOOl)		66		6	72	27.0
South Santee (8001;	2	1		5	8	3.0
Bull Bay (8003)	21	12	1	35	69	25.8
Price Creek (8002)				118	118	44.2
Charleston Region						
Inlet Creek ( $\mathrm{BOOL}^{\text {) }}$		2		38	40	33.1
Nowell Creek (W001)	6	1	1		8	6.6
Fort Johnson (J00l)	1	19	1	2	23	19.0
Hog Island (J002)	12	32			44	36.4
Ashley fiver (KOOl)	1	3		2	6	4.9
Southern Region						
Stono River (FOOL)		30			30	3.8
Ashepoo River (HOO2)					0	0.0
Rock Creek (HOO3)	1	3		3	7	3.9
Whale Branch (HOO1)		18		2	20	2.6
Port Royal Sound (P002)		22			22	2.8
Colleton River (POOL)			1	1	2	0.2
Calibogue Sound (6001)		692			699	89.6
Total Catch						
by Season	44	908	4	212	1,168	
Season Contribution to Total Catch (\%)	3.8	77.7	0.3	18.2		200.0
Grand Total (All stations and seasons combined) $=1.168$						

(Holbrook, 1860; Fowler, 1945). Some life history stage of this species is present during most, if not all, months of the year (Lunz and Schwartz, 1969). Dahlberg and Odum (1970) also found weakfish abundant in two Georgia estuarine systems.

Total catch. During the year 2,136 weakfish, with a total weight of 31.0 kg , were obtained at all stations combined (Table 7). This species ranked fifth in numerical abundance statewide, constituting $3.4 \%$ of the total number, and sixth in weight, representing $5.7 \%$ of the total fish biomass for the 12-month period.

Total length, temperature, and salinity ranges. Weakfish collected in the estuaries during the year had a total length range of $23-323 \mathrm{~mm}$ and occurred over a bottom salinity range of $0.4-34.4 \%$ and a bottom temperature range of $13.7-31.4 \mathrm{C}$ (Table 8).

Length-frequency relationship. The length-frequency relationship for weakfish from all stations is sumarized in Table 32. Previous investigators have noted a prolonged spawning season for weakfish (Welsh and Breder, 1923; Hildebrand and Cable, 1934; Pearson, 1941; Daiber, 1957; Massman, Whitcomb, and Pacheco, 1958). Lunz and Schwartz (1970) indicated that, for South Carolina waters, the major spawning period is from May to August.

Young-of-the-year weakfish, newly-recruited from spring-summer spawning, were abundant in South Carolina estuaries beginning in June and continuing through October (Table 32). These young fish, with a total length range of 23-72 ma in June grew rapidly from a modal length

Table 32. Lengthmfrequency relationship for Cynoscion regalis collected by bottom trewl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.


Table 32. (Continued.)

Total   Length Interval (mm)	Month											
	$\frac{1973}{\text { Feb. }}$	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\text { Jan. }}$
188-192			1					1				
193-197								1			1	
198-202									1			
203-207									1	1		
208-212								1				
213-217												
218-222									1			
223-227												
228-232									1			
233-237												
293-297												1
323-327												1
Mean Total Length (mm)		155	151		46	84	98	140	117	119	138	152

of 90 mm in July to 125 mm in September. This growth rate, rapid compared to that of several of the other sciaenid species obtained in this study, was also observed earlier by Hildebrand and Schroeder (1928), Hildebrand and Cable (1934); and Massman et al. (1958). The wide range of total lengths for the entire population, $23-327 \mathrm{~mm}$ from July, 1973 to January, 1974, represents an overlapping of young-of-theyear and older fish.

In South Carolina, seaward migration of weakfish uslally begins in late fall (Lunz and Schwartz, 1970). These fish then return to the coastal nursery grounds the following spring as one-year-olds. Interestingly, however, during the present study seaward migration was not apparent until January and this delayed seaward movement may have been influenced by an unusually warm fall of 1973. Also, few weakfish were caught in the estuaries in March and April. This relative absence in the spring may have been due at least in part to avoidance of, or escapement from, the small ( $6-m$ ) otter trawl.

These length-frequency results compare favorably with those obtained earlier for weakfish populations by Hildebrand and Cable (1934), Nesbit (1954), Miller and Jorgenson (1969), and Dahlberg (1971).

Distribution and relative abundance. In the North Edisto River, 596 weakfish, with a total weight of 7.9 kg , were caught during the year (Table 10). In this estuary, the species ranked fifth in numerical abundance, constituting $2.1 \%$ of the total number, and fifth in weight, representing $4.6 \%$ of the total fish biomass for the l2-month period. Weakfish occurred at all stations and was generally distributed throughout the estuary. This fish was most prevalent at two stations, Point of

Pines and Steamboat Creek, which together accounted for $54.7 \%$ of the species caught in the North Edisto. The species was present in the estuary in March and from June to December and were most abundant during July and August, when $64.4 \%$ of the year's catch occurred (Table 33). No North Edisto station had weakfish present during all months of the year. This fish was absent from all trawl catches in the eatuary in February, April and May, 1973 and in January, 1974.

In the South Edisto River, 316 weakfish, with a total weight of 7.1 kg , were caught during the year (Table 12). In this estuary, the species ranked seventh in numerical abundance, constituting $3.2 \%$ of the total number, and fourth in weight, representing $7.2 \%$ of the total fish biomass for the 12 -month period. Weakfish favored the seaward half of the estuary, with the Bay Point station contributing $71.2 \%$ of the total catch in the South Edisto. Catches decreased with increasing distance upriver. At no time did this fish penetrate to Snuggedy Swamp, the station furthest upriver above the freshwater line. The species was present in the estuary from August to December, but was most abundant in September, when $57.6 \%$ of the year's catch occurred (Table 34 ). No station in the South Edisto estuary had weakfish present during all months of the year. This fish was absent from all trawl catches in the estuary from February through July, 1973 and in January, 1974.

In the Cooper River, 494 weakfish, with a total weight of 6.6 kg , were caught during the year (Table 14). In this estuary, the species ranked sixth in numerical ebundance, constituting $4.7 \%$ of the total number, and sixth in weight, representing $4.8 \%$ of the total 1 ish biomass for the l2-month period. Weakfish favored the seaward third of

Table 33. Humerice abuname of Gyoscion tega_i :-isected monthly by botiom trawl at eight stations ir the vortr Edisto estuary, Scuth Carolina, from Fetruary, 1973 throuth January, 1974.

Month	$\ldots$ - Sistions (Froeressing Seawari $\rightarrow$ )								Total   Uatch by Month	Monthly   Contributiun   to Toval Cateh (\%)
	Yonges Is.lanc (3001)	$\begin{aligned} & \text { Toinguspo } \\ & \text { Creck } \\ & \text { (E002) } \end{aligned}$	Beare ylurf (E003)	Dawho Kiver (ECO4)	$\begin{aligned} & \text { Steambca: } \\ & \text { Creek } \\ & \text { (EOOS) } \end{aligned}$	$\begin{aligned} & \text { Wadmalaw } \\ & \text { Island } \\ & \text { (E006) } \end{aligned}$	Point of Fines; (EOOT)	Deveaux Bank (ECO8)		
1973										
February									0	0.0
March								1	1	0.2
April									0	0.0
May									0	0.0
June			1		9			7	17	2.8
July	19	19		11	69	29	49	5	201	33.7
August	18		6	9	5		139	6	183	30.7
September	12	2	19		13	21	5		72	12.1
October	16	$?$	5	10	14	4	2	9	62	10.4
November	6			2	14	4	1		27	4.5
December			19	1	4	4	2	3	33	5.5
1974										
January									0	0.0
Total Catch										
by Station	71	23	50	33	128	62	198	31	596	
Station Contribution										
ta Total Catck (\%)	13.9	3.8	3.4	5.5	21.5	10.4	33.2	5.2		130.0
Grand Total (All st	montr.s	ned) $=59$								

Grand Total (All stations and montrs combined) $=596$

Table 34. Numerical abundance of Gynoscion regalis collected monthly by bottom traw at four ftations ir the south Fisto estuary, South Carolina, from February, 1973 through January, 1974.

Month	Staticns (Prozressirg Seaward $\rightarrow$ )				T'cta!   Catef by Month	Monthly   Contributaon   to "'nta: Cateh (\%)
	$\begin{aligned} & \text { Snuggedy } \\ & \text { Swamp } \\ & \text { (DOOL) } \end{aligned}$	$\begin{aligned} & \text { Bampon } \\ & \text { Island } \\ & (\text { D002 }) \end{aligned}$	$\begin{aligned} & \text { Fenwick } \\ & \text { Island } \\ & \text { (D003) } \end{aligned}$	$\begin{aligned} & \text { Bay } \\ & \text { Point. } \\ & \text { (D004) } \end{aligned}$		
1973						
February					0	0.0
March					0	0.0
April					0	0.0
May					0	0.0
June					0	0.0
July					0	0.0
August		9	27		36	-1.4
September		9	12	161	182	37.6
October		1	7	63	71	?2.5
November		2	$\pm 8$		20	6.3
December			6	1	7	2.2
1974						
January	-	$\cdots$	-	$\cdots$	0	0.7
Total Catch						
Station Contribution to Total Catch (	0.0	6.6	22.2	$71.2{ }^{2}$		100.3
Grand Total (All stations and months combined) $=316$						

the estuary, with Cummings Point and the mouth of the Cuoper River together accounting for $88.1 \%$ of the total catch for the estuary. The species was most abundant at Cumings Point, the seawardmost stetion, where $63.8 \%$ of the year's catch occurred. This fish was not able to penetrate to "The Tee", the station furthest upriver above the freshwater line. Weakfish were present in the estuary from July to December, and were most abundant during July, August, and September, when $87.5 \%$ of the year's catch occurred (Table 35). No Cooper River station had this fish present during all months. Distribution and relative abundance of weakfish at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are summarized in Table 36.

Bairdiella chrysura (Silver Perch)

The silver perch (Bairdiella chrysura), a relatively common sciaenid in coastal waters, does not reach sufficient size for sport fishing or marketing. This species ranges from Massachusetts to Texas (Welsh and Breder, 1923; Hildebrand and Schroeder, 1928; Hildebrand and Cable, 1930) and is found frequently in South Carolina estuaries (Holbrook, 1860; Fowler, 1945). In this study, the species was present during every month of the year and in every major estuary or coastal region of the state (Tables 5 and 37). Miller and Jorgenson (1969) and Dahlberg and Odum (1970) collectively found silver perch throughout the year in Georgia estuaries from Jekyll Island to St. Catherines Sound. Springer and Woodburn (1960) captured silver perch in Tampa Bay, Florida during all but one month of the year.

Table 35. Numerical abundance of Cyoscion regalis collected monthly by bottom trawl at five stations in the cocper River estuary, from February, 1973 through January, 1974 .

Month	Stations (Progressing Semmard $\rightarrow$ )					Total   Catch by Month	Monthly Contribution to Total Catch (\%)
	$\begin{aligned} & \text { The } \\ & \text { Tee } \\ & \text { (cool) } \end{aligned}$	$\begin{aligned} & \text { Bie } \\ & \text { Island } \\ & (\operatorname{co0}) \end{aligned}$	$\begin{aligned} & \text { North } \\ & \text { Charleston } \\ & (\mathrm{coO} 3) \end{aligned}$		$\begin{aligned} & \text { Cunamings } \\ & \text { Point } \\ & \text { (J003) } \end{aligned}$		
1973							
February						0	0.0
March						0	0.0
April						0	0.0
May						0	0.0
June						0	0.0
Juiy				8	183	191	38.7
August			11	17	97	125	25.3
September			18	74	24	116	23.5
October			21	13	3	37	7.5
Novenber		2	5		8	15	3.0
December		2		8		10	2.0
1974							
January	,		-			0	0.0
Total Catch 0							
by Station	0	4	55	120	315	494	
Station Contribution to Total Catch (\%)	0.0	0.8	11.1	24.3	63.8		100.0
Grand Total (All stations and months combined) $=494$							

 trom February, 1973 tirough Iatuary, 1974.


Table 37. Length-frequency relationship for Bairdiella chrysura collected by hottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.

Total   Length Interval (mm)	Month											
	$\frac{\overline{1973}}{\text { Feb. }}$	Mar .	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\operatorname{Jan}}$
28-22												1
23-27												
$28-32$												
33-37						1						
38-42						3						
$43-47$						10						
48-52						15	1					
53-57						12	1					
$58-62$						9	2					
$63-67$						10	1					
68-72						3	9					1
73-77			1			3	3	1				
$78-82$						3	7		1			
$83-87$			3			1	4	2	3			
88 - 92	1		2				2	3	10			
93-97			2				1	10	15			3
98-102	1	1					3	11	31	3	1	6
103-107			1				3	23	51	3	2	18
108-112	1		5					20	65	16	7	34
113-117	1	2	4	1				7	73	6	9	37
118-122	2	1	13	4				10	50	13	24	51
123-127		4	26		1			4	41	8	28	47
128-132		5	13		2	3		1	43	4	29	45
133-137	1	2	13	1		1			23	3	10	18
138-142		1	13	1		3		1	9	4	6	20
143-147			9			7	4	2	7	6	8	6
148-152		4	2	1		6	1	2	5	2	3	6
153-157			3			3	1	2	2	1	5	2
158-162			1			2	5	1	1	2	1	1
163-167						3	5		2		2	7
168-172		1				2	1		2	1	6	5

Table 37. (Continued.)

Total	Month											
Length Interval (min)	$\frac{\overline{1973}}{\text { Feb. }}$	Mar .	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1274}{\text { Jan. }}$
173-177						7		1	1		4	6
178-182			1			3			1		3	4
183-187									1			2
188-192						1						
Mean Total												
Length (mm)	113	139	128	127	128	94	104	111	120	124	132	126

Total catch. During the year 1,863 silver perch, with a total weight of 43.6 kg , were obtained at all stations comoined (Table 7). This species ranked sixth in numerical abundance statewide, constituting $3.0 \%$ of the total number, and $f$ ifth in weight, representing $8.0 \%$ of the total fish biomass for the 12 -month period.

Total length, temperature, and salinity ranges. Silver perch collected in the estuaries during the year had a total length range of $40-188 \mathrm{~mm}$ and occurred over a bottom salinity range of $0.1-34.4 \% 00$ and a bottom temperature range of $7.2-31.4 \mathrm{C}$ (Table 8).

Length-frequency relationship. The length-frequency relationship for silver perch from all stations is summarized in Table 37. At various locations throughout its range, silver perch spawn from as early as April to as late as August, with the majority of spawning occurring in May and June (Welsh and Breder, 1923; Hildebrand and Schroeder, 1928; Hildebrand and Cable, 1930). However, Springer and Woodburn (1960) found that spawning was completed by early May while Kuntz (1914) found that the spawning peak extends to early July.

Total lengths for silver perch obtained from February to June ranged from 73 - 182 mm , with a modal length of 125 mm in April, suggesting that these fish were then approaching an age of one year. The wide range of total lengths from July, 1973 to January, 1974 indicate an obvious overlapping of young-of-the-year and one-year-old fish. In July, August, and September, both year-classes are still represented in South Carolina estuaries, with distinct modal lengths providing clear delineation between the two age groups. The modal lengths for the young-of-the-year in July, August, and September were 50,70 , and 105 mm , while the
one-year-old fish had modal lengths of 145,160 , and 150 mm , respectively. From a modal length of 115 mm in October, the young-of-the-year can be further traced to a modal length of 130 mm in December, 1973 and 120 mm in January, 1974.

These length-frequency patterns compare favorably with those obtained previously by Hildebrand and Cable (1930) in North Carolina and by Miller and Jorgenson (1969) in Georgia waters.

Distribution and relative abundance. In the North Edisto River, 415 silver perch, with a total weight of 7.3 kg , were caught during the year (Table 10). In this estuary, the species ranked seventh in numerical abundance, constituting $1.5 \%$ of the total number, and seventh in weight, representing $4.2 \%$ of the total fish biomass for the 12 -month period. Silver perch were present in the estuary most of the year (except March) and were most abundant in September and October, when $38.8 \%$ of the year's catch occurred (Table 38). This fish was found only occasionally in the estuary from February through June, but was rather evenly distributed over the subsequent months from July, 1973 through January, 1974. However, no North Edisto station had silver perch present during all months of the year. The species was most prevalent at Yonges Island ( $24.0 \%$ ), the station furthest upriver, and Deveaux Bank ( $20.5 \%$ ), the seawardmost station, which together accounted for $44.5 \%$ of the silver perch caught in the North Edisto. The abundance of this species at the two stations furthest apart is additional indication that silver perch were generally distributed throughout this river system.

In the South Edisto River, 100 silver perch, with a total weight of 2.6 kg , were caught during the year (Table 12). In this estuary,

Table 38. Numerical abundance or Ealrdiella chrysura collected montrly by botom trawl at eifht stations in the liortr Edisto estiary, South Carolina, from February, 1973 through Jaciary, 1974.

Month	Stations (Protressirg Seuwari $\rightarrow$ )									
	Yolges Isia:lat (5001)	$\begin{gathered} \text { Toogewac } \\ \text { Creek } \\ \text { (b002) } \end{gathered}$	$\begin{aligned} & \text { Bears } \\ & \text { 3luff } \\ & \text { (F003) } \end{aligned}$	Ltwhe River (E.OOL	$\begin{aligned} & \text { Steambont } \\ & \text { oreek } \\ & \text { (E005) } \end{aligned}$	$\begin{aligned} & \text { Wadmat } \\ & \text { Island } \\ & \text { (E:006) } \end{aligned}$	$\begin{gathered} \text { Foint of } \\ \text { "ines } \\ (\text { Eoon }) \end{gathered}$	$\begin{gathered} \text { Devenur } \\ \text { Bank } \\ \text { (E008) } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Catch y } \\ & \text { Yooth } \end{aligned}$	Moritisly   Mortribution   to Total Caten (
1973										
February				1	1	1	1	3	7	1.7
March									0	0.0
April		1						3	4	1.0
May		1						6	7	1.7
June								3	3	0.7
July	26			1	l			1	29	1.0
August	25	6			1		3	7	42	10.1
September	3	33		1	40		2	7	86	20.7
October	19	14		1	17		$?$	22	75	18.1
November	26	7	1	3	6			15	50	14.0
December	1		6	20	?	1		18	49	11.6
1974										
January	.	3.		47	6	-		-	56	13.5
Total Catch										
Station Contribution										
Grand Total (All sta	months	ad) $=415$								

the species ranked eleventh in numerical abundance, constituting $1.0 \%$ of the total number, and tenth in weight, representing $2.6 \%$ of the total fish biomass for the 12 -month period. Silver perch occurred at all stations in this river system but were most numerous at the estuary mouth (Bay Point), which accounted for $71.0 \%$ of the year's catch. Catches of this fish decreased with increasing distance upriver. The species rarely penetrated to Snuggedy Swamp, the station furthest upriver above the freshwater line. Silver perch were present from August, 1973 to January, 1974 , and were most abundant in October, 1973, when $67.0 \%$ of the year's catch occurred (Tabie 39).

In the Cooper River, 279 silver perch, with a total weight of 9.3 kg , were caught during the year (Table l4). In this estuary the species ranked eleventh in numerical abundance, constituting $2.7 \%$ of the total number, and fifth in weight, representing $6.8 \%$ of the total fish biomass for the 12 -month period. Silver perch occurred in Cooper River catches during nine of the twelve months, and were most abundant in December, 1973, and January, 1974, which together accounted for $73.8 \%$ of the year's catch (Table 40). The species was most prevalent at three stations in the middle reaches of the Cooper River estuary. These three stations, Big Island (21.5\%), North Charleston (12.9\%), and the Cooper River mouth ( $64.9 \%$ ), together accounted for $99.3 \%$ of the silver perch captured. No silver perch penetrated upriver to "The Tee", above the freshwater line.

Distribution and relative abundance of silver perch at 16 additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are sumarized in Table 41.
 Carolica, from February, 197? throuth むaniary, $19 \%$.


Table 40. Numerical abundance of Bairdieila ghrishra coilected monthiy by bottom trawl at five stations in the rooper river estivary, folith Carolina, from February, i973 traugh Janalary, $197 \%$.

Month	(a, ations (1rogrescing Seaward - )					Total Catath by konth	Northis contribution   ta Total Catch (\%)
	The Tee (C0O1)	$\begin{aligned} & \text { Kig } \\ & \text { sishnd } \\ & \text { (coon) } \end{aligned}$	North Charleston (coos)	Mo:tin of Cooper (COO4)	$\begin{aligned} & \text { Cummings } \\ & \text { Foint } \\ & (., 1003) \end{aligned}$		
1973							
February						0	0.0
March				22		22	7.9
April						0	0.0
May				1		1	0.4
June						0	0.0
July				2		2	0.7
August			5	1		6	2.1
September			4	6		10	3.6
October		11	2	7	2	22	7.9
Nover:ber		3	7			10	3.6
December		46	3	116		165	59.1
1974							
January	-	-	15	26	--...	41	14.7
Total Catch by Station	0	60	36	181	2	279	
Station Contribulion to Total Catch ( ${ }^{7}$ )	0.0	21.5	12.9	64.9	0.7		100.\%

Grand Tota: (All stations and months combined) $=279$
 from Fetruary, 1973 through January, 197 L .


## Ictalurus catus (White Catfish)

The white catfish (Ictalurus catus) is the most abundant ictalurid present in South Carolina estuaries (Table 7). The range for this species has been variously reported from New Jersey to Florida (Hubbs and Lagler, 1949; Carlander, 1969) and into Nevada and California (Schwartz and Jachowski, 1965). Mansueti and Hardy (1967) summarized the range as being from coastal streams in Pennsylvania, New York, and Massachusetts south to Lake Okeechobee, Florida, and west along the Gulf of Mexico to the Escambia drainege system and also introduced to Lake Erie and areas of Nevada and the Pacific coast.

This species has been previously reported in South Carolina estuaries by Fowler (1945) and Lunz and Schwartz (1970). Stevens (1959) also reported white eatfish from Lakes Marion and Moultrie.

This commercially-important species (Smith, 1907; Menzel, 1945; Stevens, 1959) was present in all major South Carolina estuaries or coastal regions during all months of the year (Tables 5 and 42 ).

Total aatch. During the year, 1,732 white catfish, with a total weight of 54.2 kg , were obtained at all stations combined (Table 7). This species ranked seventh in numerical abundance statewide, constituting $2.8 \%$ of the total number, and fourth in weight, representing $9.9 \%$ of the total fish biomass for the 12 -month period.

Total length, temperature, and salinity ranges. White catfish collected in the estuaries during the year had a total length range of 28-392 mm and occurred over a bottom salinity range of < 0.1-23.9\% and a bottom temperature range of 11.6 - 31.4 C (Table 8).

Table 42. Length-frequency relationship for Ictalurus catus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.

Total   Length Interval (mm)	Month											
	1973											1974
	Feb.	Mar .	Apr	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.
28-32						1		1				
33-37							1					
$38-42$			1				3	1		1		
43-47			1			3	9	2		1	3	
48-52				1		3	2	2		2	2	
$53-57$	5		3	2		6	6	3	1	11.	2	
$58-62$	17		4	1		1	2	5		10	4	4
$63-67$	14		13	2	1	2	2	3		12	8	5
68-72	17		13	4			1	1	1	5	2	4
$73-77$	14		14	6	2		1	1	1	3	7	12
$78-82$	15		18	8	1	1		1		1	3	1
83-87	23	1	10	6	4	1		1	1	1	1	1
88-92	23	2	9	5	3	1					2	3
93-97	15		8	3	9	2					1	1
98-102	13		16	2	5	1					2	1
103-1.07	11		14	2	5	6						
108-112	5		8		5	5				1		
113-117	4		5		4	3	1					1
118-122	7		6	2	2	4	2			1		1
123-127	10		5	1		5					5	1
128-132	6		4		2	1				2	3	2
133-137	7		2	1	1	1	1			2	5	6
138-142	2		3			6	2			4	5	
143-147	7		3			4		1	1	3	2	2
148-1.52	6		2						1	1	3	
153-157	5		2		2	3	1	1		1	3	5
158-162	5	1.	5		1					1	4	1
163-167	4		2		1	2				3	3	2
168-172	2		4			1					4	5
173-177	6		2		2					4		4
178-182	3		4		1		2			3		1
183-187			3		1	1			1	2	2	2

Table 42. (Continued.)

```Total Length Interval (mmi)```	$\frac{1973}{\mathrm{Feb}}$	Mar.	Apr.	May	June	Month		Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\text { Jan. }}$
						July	Aug.					
188-192	1		4			1	1			1	2	3
193-197	2		1		1		1		1			5
198-202	2		2			1				1	4	5
203-207	2			2	1					1	1	1
208-212	2		1			1	1					1
213-217			2						1	1		2
218-222			1						1	1	1	
223-227	2		1							1		2
228-232	1		1								2	2
233-237												
238-242												
243-247	1					1						
248-252									1			
253-257												
258-262												
263-267				1								
288-292									1			
293-297												
298-302												
303-307												
308-312												
313-317									1			
318-322									1			
323-327												1
368-372									1			
373-377												
378-382												
383-387												
388-392									2			
Mean Total Length (mm)	104	106	170	93	118	113	84	67	219	104	125	130

Length-frequency reletionship. The length-frequency relationship for white catfish from all stations is sumarized in riable 42. Based on the results of an earlier age-growth study for South Carolina white catfish populations (Stevens, 1959), it appears that at least five different age groups were included in this distribution (Table 42). The total length range remained relatively stable throughout the year and ranged from $53-247 \mathrm{~mm}$ in February, 1973 to $58-327$ mm one year later. Only during October was the total length range extended considerably, from 53-392 mm. This relatively stable length range is probably due to the fact that in South Carolina white catfish are residential to fresh ard brackish waters throughout the year and do not migiate to and from this zone.

At various locations throughout its range, white catfish spawn from May to July. In Virginia the spawning peak occurs in late June and early July (Menzel, 1945), and in North Cerolina during July (Smith, 1907). In South Carolina spawning occurs from May to July, with peak spawning activity in June (Stevens, 1959). Newly-recruited young-of-the-year first appeared in trawl catches during July at a total length range of $28-67 \mathrm{~mm}$, followed by modal lengths of 60,65 , and 75 mm in September, November, and January, respectively. Most of the common estuarine fishes collected in this study were seasonal migrants. Because white catfish in South Carolina are residential to low-salinity waters, further data interpretations concerning recruitment ere difficult.

Distribution and relative abundance. In the North Edisto River, one white catfish, with a total weight of 0.2 kg , was caught during the year (Table 10). With the exception of this one specimen captured during February at Dawho River, white catfish were absent from the North

Edisto during the year (Table 43). The North Edisto Fiver is a highsalinity estuary with little freshwater influence, and in all probability, this stenohaline species could not tolerate for extended periods the salinities found in such a mixo-polyhaline (Venice system, 1958) environment. In fact, the upper lethal salinity limit for white catfish under some laboratory conditions has been shown to be about $14,0 \%$ in some parts of its range (Kendall and Schwartz, 1968). In the North and South Newport Rivers of Georgia, Dahlberg (1971) only found white catfish in salinities Less then $12.0^{\circ} / 00$.

In the South Edisto River, 1,380 white catfish, with a total weight of 26.2 kg , were caught during the year (Table I2). In this estuary, the species ranked third in numerical abundance, constituting 13.8% of the total number, and first in weight, representing 26.8% of the total fish biomass for the 12 -month period. White catfish were present in the South Edisto estuary throughout the year (Table 44). The species whs most abundant in December, when 47.1% of the year's eatch occurred. This fish was most abundant at Snuggedy Swamp, the station furthest upriver, which accounted for 51.8% of the total catch in the estuary. Catches decreased proportionately moving seaward. No white catfish occurred in traw catches at the mouth of the South Edisto (Bay Point).

In the Cooper River, 304 white catfish, with a total weight of 15.6 kg , were caught during the year (Table 14). In this estuary, the species ranked ninth in numerical abundance, constituting 2.9% of the total number, and second in weight, representing 11.4% of the total fish biomass for the 12 -month period. White catfish were present in this estuary during 8 of the 12 months and were most abundant in April, when 77.3% of the year's catch occurred (Table 45). Most of the Cooper River catch was contributed

Table 43. Numerical abundance of Ictalurus catus collectedmorihly by nottom traw at fight stations in the fiorth fisto estuary, Solith Carolina, from February, 1973 through January, 19 ? 4 .

Month	Stat iors (Progressinj Seaward + ;								$\begin{aligned} & \text { Tetal } \\ & \text { Fatcr by } \\ & \text { Fonth } \end{aligned}$	Month] y anotribution \pm Total Catah (s)
	Yonges Island (E001)	$\begin{gathered} \text { Toofocdeo } \\ \text { Creek } \\ \text { (FOOD) } \end{gathered}$	Bears eluff (FOC3)	Dawho River (F.OOL)	$\begin{gathered} \text { Steambnat } \\ \text { Crech } \\ (\text { F.005 }) \end{gathered}$	$\begin{gathered} \text { Wadmalaw } \\ \text { lslasd } \\ (\mathrm{EOO6}) \end{gathered}$	$\begin{gathered} \text { Fotnt of } \\ \text { Pi:1es } \\ \text { (Fo07) } \end{gathered}$	$\begin{aligned} & \text { Deveatix } \\ & \text { EAtix } \\ & (\text { E00 }) \end{aligned}$		
1973										
February				1					1	100.0
March									0	0.0
April									0	0.0
May									0	0.0
June									0	0.0
July									0	0.0
August									0	0.0
September									0	0.0
Octover									0	0.0
November									0	0.0
December									0	0.0
1974										
January	--_	-	-	-		.	-	-	0	$\underline{0.0}$
Total Catch by Station										
Station Contribation										
Grand Total (All st	nths c	ed) $=1$								

 Carolina, from :ebruary, 1973 througt Januery, 1974.

Montr	Stations (Progressing Seaward \rightarrow)				Total Catch by Month	Monthiy Contribution To Total Cutch (\%)
	$\begin{aligned} & \text { Snugesedy } \\ & \text { Swamp } \\ & \text { (D001) } \end{aligned}$	$\begin{aligned} & \text { Simpson } \\ & 151: 3 n d \\ & \text { (n002) } \end{aligned}$	$\begin{aligned} & \text { Ferrwick } \\ & \text { Tsiland } \\ & \text { (Dooj) } \end{aligned}$	Bay Foint (D004)		
1973						
February		99	133		232	16.8
March		1	?		3	0.2
April		46	28		$7{ }^{4}$	\%. 4
Ma.y		${ }_{4} 7$			47	3.4
June	53	12			65	4.7
July		12	9		2 i	1.5
August		37			37	2.7
September	3	18			21	1.5
October		2			2	0.1
November	58	32			9 C	6.5
December	600	47	3		650	47.1
1974						
Total Catch by Station	715	471	194	0	1,380	
Station Contribution to Total ©atch (\%)	51.8	34.1	14.0	6.0		100.0
Grand Totel (All stat	onths comb	1,380				

 Carolina, from February, 1973 through January, 197^{2}.

Month	Stations (Progressing Sesward \rightarrow)					$\begin{aligned} & \text { Totai } \\ & \text { Cateh by } \\ & \text { Month } \end{aligned}$	$\begin{aligned} & \text { Honihly } \\ & \text { Contribution } \\ & \text { to 'lotal Catcil (\%) } \end{aligned}$
		$\begin{aligned} & \text { Big } \\ & \text { Island } \\ & \text { (cooe) } \end{aligned}$	North Charlerston (0003)	\qquad	$\begin{aligned} & \text { Cunnings } \\ & \text { Foint } \\ & \text { (Joo3) } \end{aligned}$		
1973							
February	4	42	12			58	19.1
March			1			1	0.3
April	19	2	206	8		235	77.3
May	1					1	0.3
June						0	c. 0
Juiy						0	0.0
August		1	1			2	0.6
September	1					1	0.3
October		3	1			4	1.3
November		2				2	0.6
December						0	0.0
1974							
January	-	-	\square	- - -		0	0.0
Total Catch							
by Station	25	50	221	8	0	304	
Station Contribution							
to Totel Catch (\%)	8.2	16.4	72.1	2.6	0.0		100.0
Grand Total (All ste	niths	ined $)=$					

by a single station (North Charleston) during a single month (April). As with the South Edisto, none were caught at the estuary mouth (Curmings Point).

Distribution and relative abundance of white catfish at additional stations trawled quarterly in the northern, Charleston, and southern coastal regions of the state are sumarized in Table 46 .

Urophycis regius (Spotted Hake)

Spotted hake (Urophycis regius) is the most aburdant gadid in South Carolina estuaries (Table 7). Range for this species was reported by Hildebrand and Schroeder (1928) and Hildebrand and Cable (1938) to be from New England to the Carolines. Bigelow and Schroeder (1953) described the range to be from southern New England and New York to Cape Hatteras (including Chesapeake Bay, where it is plentiful) and ranging southward to deep water off northern Florida. This fish also occurs in the Gulf of Mexico (Springer and Bullis, 1956). Spotted hake was present in all major South Carolina estuaries or coastal regions (Table 5), generally between Jamuary and May (Table 47). Dahiberg and Odum (1970) and Sikora, Heard, and Dahlberg (1972) also found the species seasonally abundant from January to May in Georgia estuarine systems.

Total catch. Although a seasonal migrant (Struhsaker, 1969), 1,612 spotted hake, with a total weight of 17.6 kg , were obtained during the year at all stations combined (Table 7). This species ranked eighth in numerical abundance statewide, constituting 2.6% of the total number, and eighth in weight, representing 3.2% of the total fish biomass for the 12-month period.

Table 46. Numerical abundance of Ietalurus catus collected quarterly by bottom trawl at 16 stations across the South Carolina coastal zone from February, 2973 through January, 1974.

Station	Trawl Cateh by Season (Numbers)				Total Catch by Station	Station Contribution to Total Catch (*)
	Spring (April, 1973)	$\begin{gathered} \text { Sumer } \\ \text { (July, 1973) } \end{gathered}$	$\begin{gathered} \text { Fall } \\ \text { (October, } 1973 \text {) } \end{gathered}$	$\begin{gathered} \text { Winter } \\ \text { (January, } 2974 \text {) } \end{gathered}$		
Northern Hegion						
WInyeh Bay (Y001)	6			9	15	100.0
South Sentee (S001)					0	0.0
Bull Bay (B003)					0	0.0
Price Creek (B002)					0	0.0
Charleston Region						
Inlet Creek (Hool)					0	0.0
Nowell Creek (W001)					0	0.0
Fort Johneon (J001)	1				1	100.0
Hog Ibland (JOO2)					0	0.0
Ashley River (KOOl)					0	0.0
Southern Region						
Stono River (FOO2)					0	0.0
Ashepoo River (H002)	75	53	11	9	148	96.7
Rock Creek (HOO 3)	5				5	3.3
Whale Branch (HOOL)					\bigcirc	0.0
Port Royal Sound (P002)					0	0.0
Colleton River (P001)					0	0.0
Calibogue Sound (COOL)	-		- -		0	0.0
Total Catch						
Sesson Contribution to Total Catch (\%)	51.5	31.4	6.5	10.6		100.0
Grand Total (All stations and seasons combined) $=169$						

Table 47. Length-frequency relationship for Urophycis regius collected by bottom trawl in South Carolina eatuaries (all stations combined) from February, 1973 through January, 1974.

```Total Length Interval (mm)```	Month											
	$\underline{1973}$											1974
	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.
53-57	1											
58-62	2											
63-67	8	2										
68-72	9	3										3
73-77	14	2	12									
78-82	18	13	13									
$83-87$	23	12	18	1								
88-92	21	14	24	1								
$93-97$	15	17	26	3								
$98^{\circ}-102$	12	25	28	8								
103-107	6	25	27	8								
108-112	2	42	31	22								
113-117		30	27	8								
118-122		26	20	9								
123-127		10	20	5								
128-132		8	24	7								
133-137		4	20	4								
138-142		4	14.	5								
143-147			4	2								
148-152		2	4	2								
153-157			4	2								
158-162			1	1								
163-167			2	1								
168-172			2									
173-177				1								
178-182			2									
183-187			1									
188-192												
193-197				1								

Total length, temperature, and selinity ranges. Spotted hake collected in the estuaries during the year had a total length range of $57-196 \mathrm{~mm}$ and occurred over a bottom salinity range of $3.4-29.8 \% / 00$ and a bottom temperature range of 8.6-22.6C (Table 8).

Length-frequency relationship. The length-frequency relationship for spotted hake from all stations is summarized in Table 47. Spawning season has been reported to be from September to February (Hildebrand and Cable, 1938) or March (Barans, 1969; 1972), with the majority of spawning activity between September and November.

Young-of-the-year spotted hake newly recruited from the previous fall - winter spawning were abundant in February catches at total lengths of $53-112 \mathrm{~mm}$. Similarly, Barans (1969) found that by February most new recruits had attained total lengths of $60-130 \mathrm{~mm}$. These young-of-the-year can be further traced to a modal length of 110 mm in May. Abundant in May, spotted hake rapidly disappeared from South Carolina estuaries, with no evidence of further presence from June to December. This disappearance can be attributed to seaward migration to deeper water, which generally occurs during this time (Hildebrand and Cable, 1938). Inshore movement of spotted hake began once more in January, 1974, when several new young-of-the-year, at a total length of about 63 mm , were captured in South Carolina estuaries. These length-frequency results compare favorably with those previously obtained by Hildebrand and Cable (1938), Barans (1969), and Sikora et al. (1972).

Distribution and relative abundance. In the North Edisto River, 483 spotted hake, with a total weight of 4.8 kg , were caught during the year (Table 10). In this estuary, the species ranked sixth in
numerical abundance, constituting $1.7 \%$ of the total number, and eighth in weight, representing $2.8 \%$ of the total fish biomass for the l2-month period. Spotted hake were most prevalent at the Bears Bluff' and Deveaux Bank stations, which together accounted for $60.9 \%$ of this speciea caught in the North Edisto. This fish was present in the estuary February - May, 1973 and in January, 1974 (Table 48). Greatest abundance occurred in March and April, when $75.6 \%$ of the year's catch occurred. At no North Ealato station were spotted hake present during all months and none were captured during the entire year at two of the three tributary stations, Lower Toogoodoo Creek and Dawho River.

In the South Ealsto River, 461 spotted hake, with a total weight of 5.6 kg , were caught during the year (Table 22). In this estuary, the species ranked sixth in numerical abundance, constituting $4.6 \%$ of the total number, and sixth in weight, representing $5.8 \%$ of the total fish biomass for the 12 -month period. All spotted hake caught in the South Edisto were taken at the most seaward station (Bay Point), with no penetration into the estuary. This species was present from February to May, but was most sbundant in March and April when $97.8 \%$ of the total catch for the year occurred (Table 49).

In the Cooper River, 582 spotted hake, with a total weight of 6.1 kg , were caught during the year (Table 14). In this estuary, the species ranked fifth in numerical abundance, constituting $5.6 \%$ of the total number, and seventh in weight, representing 4.4\% of the total fish biomess for the 12 -month period. Spotted hake were captured only in the seaward third of the estuary (at the Cummings Point and Cooper . River mouth stations), with no penetration further upriver during the year.

Table 48. Numericel abundance of Urophyig regius collected monthiy by botion trawl at eight stations in the North Edisto estuary, South Caroiina, from February, 1973 through Janlary, 1974.

Month	Stations (Progressing Seaward $\rightarrow$ )								Total   Cateh by Month	Monthly   Contribution   to Total Catch (\%)
	Youges Island (2001)	Tongondoo Creek (Live)	Bears Filuff (:003)	Dawho River (E004)	Steamboat Crcek (E005)	$\begin{aligned} & \text { Wadmalaw } \\ & \text { Is.land } \\ & \text { (Eoot) } \end{aligned}$	$\begin{gathered} \text { Point of } \\ \text { Pines } \\ \{\text { E007 }\} \end{gathered}$	$\begin{aligned} & \text { Deveaux } \\ & \text { Bank } \\ & \text { (E0c } 8 \text { ) } \end{aligned}$		
1973										
February	10		27		3	140		5	85	27.6
Mareh	28		74		3	4		28	137	28.4
April	26		26		3	16	$3 ?$	125	278	47.2
May	6		1		1	5	11	6	30	6.2
June									0	0.0
July									0	0.0
August									0	0.0
September									0	0.0
Oetober									0	0.0
November									0	0.0
December									0	0.0
1974										
Janumery	$\cdots$			-	1			2	3	0.6
Total Catch										
Station Contribution to Total Catch (\%)	14.5	0.0	26.5	0.0	2.3	13.4	8.9	34.4		100.0
Grand Total (All stations and months combined) $=483$										

Table 49. Numerical abundance of Urophycis regius collected montrly by botom trawl at fcur stations in the South flisto estuary, fouth Carolina, from February, 1973 through January, 1974.

Month	Stations (Progrescing Seaward $\rightarrow$ )				Total   Catch by Month	Morithly   Contribution   To Total Cateh (\%)
	$\begin{aligned} & \text { Sniggedy } \\ & \text { Swemp } \\ & \text { (DOo1) } \end{aligned}$	$\begin{aligned} & \text { Sampson } \\ & \text { Islana } \\ & \text { (D002) } \end{aligned}$	$\begin{gathered} \text { Fenwick } \\ \text { Island } \\ (D 003) \end{gathered}$	Bay Paint (Dool.)		
1273						
February				$\uparrow$	7	1.5
March				238	238	51.6
April				213	213	46.2
May				3	3	0.6
June					0	0.0
July					0	0.0
August					0	0.0
September					0	0.0
October					0	0.0
November					0	0.0
Decenber					0	0.0
1974 ${ }^{4}$						
January			$\square$	-	0	0.0
Total Catch by Station	0	0	0	462	461	
Station Contribution to Total Cateh (\$)	0.0	0.0	0.0	100.0		100.0
Grand Total (All stations and months combined) $=461$						

The Cumings Point station, at the mouth of the estuary, accounted for $64.9 \%$ of the year's catch. Spotted hake occurred in the Cooper River from February to May and were most abundant in May, when $68.9 \%$ of the total catch for the year occurred (Table 50).

Distribution and relative abundance of apotted hake at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are summarized in Table 51.

Brevoortia tyrannus (Atlantic Menhaden)

Total catch. During the year, 823 Atlantic menhaden (Brevoortia tyranns) with a total weight of 8.9 kg , were obtained at all stations combined (Table 7). This species ranked ninth in numerical abundance statewide, constituting $1.3 \%$ of the total number, and lith in weight, representing $1.6 \%$ of the total fish biomass for the 12 -month period.

Total length, temperature, and salinity ranges. Atlantic menhaden collected in the estuaries during the year had a total length range of $35-243 \mathrm{~mm}$ and occurred over a bottom salinity range of $0.1-30.3 \% 00$ and a bottom temperature range of 12.0-31.0 C (Table 8).

Length-frequency relationship. The length-frequency relationship for Atlantic menhaden from all stations is sumarized in Table 52. This species was present in some life stage in South Carolina estuaries throughout the year. Total lengths ranged from 83-202 mm in February, 33-217 mon in July, and 63-217 mm in December. Young-of-the-year first appeared in bottom trawl catches in June and July, with total lengths ranging from 38-57 mm in June and $33-57 \mathrm{~mm}$ in July. At least two yearwclasses were present, but relatively low numbers hinder their adequate separation.

Table 50. Numerical abunance of Urochycis regius collected monthiy by bottom trawl at five stations in the Cooper River estiary, Soutr. Carolina, from February, 1973 through January, 1974.

Manth	Stations (Progressing Searari $\rightarrow$ )					Tots!   Catch by Month	Monthly Contribution to Total Catch ( $)$
	$\begin{aligned} & \text { The } \\ & \text { Tee } \\ & (0001) \end{aligned}$	$\begin{aligned} & \text { Big } \\ & \text { Island } \\ & \text { (cooz) } \end{aligned}$	$\begin{aligned} & \text { North } \\ & \text { Charleston } \\ & (\operatorname{coc} 3) \end{aligned}$	$\begin{aligned} & \text { of Cooper } \\ & (\text { coo4 }) \end{aligned}$	$\begin{aligned} & \text { Cummings } \\ & \text { Point } \\ & \text { (Joo3) } \end{aligned}$		
1973							
February				91		91	15.6
March				63		63	10.8
April				27		27	4.6
May				23	378	401	68.9
June						0	0.0
July						0	0.0
August						0	0.0
September						0	0.0
October						0	0.0
Novemher						0	0.0
December						0	0.0
1974							
Januery						0	0.0
Total Catch							
by Station	0	0	0	204	378	582	
Station Contribution							
to Total Catch (\%)	0.0	0.0	0.0	35.1	64.9		100.0
Grand Potal (All stations and months combined) $=58 \mathrm{C}$							

Table 51. Namerical abundance of Urophysis mejius collected gariewly by bottor trawi at le stations across the south Caroline coastal zone from Fevruary, 1973 through January, 1974.

Station	Iraw. Catch by Seasen (Numbers)				Totel Catch by Station	Station Contribution to Totai Catch ( 1 )
	$\begin{gathered} \text { Spring } \\ (\text { April, } 2973 \text { ) } \end{gathered}$	$\begin{gathered} \text { Sumer } \\ \text { (July, 1973) } \end{gathered}$	$\begin{gathered} \text { Fail } \\ (\text { Cctober, } 1973 \text { ) } \end{gathered}$	$\begin{gathered} \text { Winter } \\ \text { (January, 1974) } \end{gathered}$		
Northern Region						
Winyah Eay (Y001)					0	0.0
South Santec (SOOL)					0	0.0
Bull Bay ( $\mathrm{BOO}_{3}$ )	4				4	100.0
Price Creek (B002)					0	0.0
Charleston Region						
Inlet creek (BOO1)					0	0.0
Nowell Creek (WOOL)					0	0.0
Fort Johnson (J001)	28				28	87.5
Hog Island (J002)	z				2	6.2
Ashley River (KOOL)	2				2	6.2
Southern Fegion						
Stono Fiver (FOOI)	30				30	60.0
Ashepoo River (HCO2)					0	0.0
Rock Creek ( H 003 )	13				13	26.0
Whale Eranch (HOOL)	2				2	4.0
Port Royal Sound (POO2)	5				5	10.0
Colleton River ( POOL )					0	0.0
Callbogue Sound (G001)	-	-	-_-m	-	0	0.0
Total Catch						
by Seeson	86	0	0	0	86	
Season Contribution						
to Total Cetch (i)	100.0	0.0	0.0	0.0		100.0
Grand Totai (All stations and seasons combined) $=86$						

$\qquad$

Teble 52. Length-frequency relationship for Brevoortia tyrannus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.


Total	Month											
Length Interval (mm)	$\frac{1973}{\text { Feb. }}$	Mar.	Apr	May	June	July	Aug .	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\operatorname{Jan}}$
198-202	I					1						
203-207							1					
208-212												
213-217			1			2					1	
218-222												
223-227									2			
228-232												
233-237										1		
288-292												1
Mean Total   Length (m)	107	142	153	119	49	95	100	115	126	152	100	133

Distribution and relative abundance. In the North Edisto River, 49 Atlantic menhaden, with a total weight of 0.9 kg , were caught during the year (Table 10). In this estuary, the species ranked 15 th in numericel abundance, constituting $0.2 \%$ of the total number, and 20th in weight, representing $0.5 \%$ of the total fish biomass for the l2-month period. This fish was present in North Edisto catches during 6 months of the year, with a slight peak in February (Table 53). No Atlantic menhaden were captured from late summer through the end of the year in the North Edisto estuary.

In the South Edisto River, 99 Atlantic menhaden, with a total weight of 2.7 kg , were caught during the year (Table l2). In this estuary, the species ranked l2th in numerical abundance, constituting $1.0 \%$ of the total number, and 8 th in weight, representing $2.8 \%$ of the total fish biomass for the 12 -month period. This fish was present in South Edisto catches during the months of February through April, June, August, September, December, and January with the majority of the catch occurring in January (Table 53).

In the Cooper River, 583 Atlantic menhaden, with a total weight of 3.0 kg , were caught during the year (Table 14). In this estuary, the species ranked fourth in numerical abundance, constituting $5.6 \%$ of the total number, and 12 th in weight, representing $2.2 \%$ of the total fish biomass for the l2-month period. This fish was caught every month but September in the Cooper River (Table 53). Peak catch occurred in June, when the majority of the year's total were captured.

Distribution and relative abundance of Atlantic menhaden at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also shmarized in Table 53.

Table 53. Numericai abundance of Brevoortia tyranug coliected b: botiom trawi ronthig in the Yorth Faisio, South sdista, and ouper Pivers and


Month	Monthly Sampling (Intensive Phase)					Quarteriy Sampling (Extensive Fhase)				
	Nor:h   Edisto	South   Edisto	Cocper   River	$\begin{aligned} & \text { Total } \\ & \text { Catch by } \\ & \text { lonth } \end{aligned}$	Percent of rootal Catch	Northern Region	Chariestor: Region	Scuthern Region	Total Catch by Guerter	Percent of Total Catch
1973										
February	36	3	56	95	13.0					
March	1	2	17	20	2.7				0	0\%
April	1	2	1	3	0.4					,
Mey	5		1	6	0.8					
June		3	365	368	50.4					
July	1		66	67	9.2	2	3	11	16	17.4
August		2	17	19	2.6					
September		$i$		1	0.1					
October			12	12	1.6		1	5	6	6.5
November			1	1	0.1					
December		8	43	51	7.0					
Jamuary	5	79	4	83	12.0	--	10	60	10.	76.1
Total Catch by Region	49	99	583	731		2	14	76	92	
Percent of										
Total Catch	6.5	13.5	80.0		100.0	2.2	19.4	82.3		100.0
Grand Total (All months and stations combined) $=823$										

## Chlorosconbrus chrysurus (Atlantic Bumper)

Total catch. During the year, 578 Atlantic bumper (Chloroscombrus chrysurus) with a total weight of 3.4 kg , were obtained at all stations combined (Table 7). This species ranked loth in numerical abundance statewide, constituting $0.9 \%$ of the total number, and $20 t h$ in weight, representing $0.6 \%$ of the total fish biomass for the 12 -month period.

Total length, temperature, and alinity ranges. Atlantic bumper collected in the estuaries during the year had a total length range of $38-132$ m and occurred over a bottom salinity range of 13.7 $32.3^{\circ} / 00$ and a bottom temperature range of $18.4-30.5 \mathrm{c}$ (Table 8).

Length-frequency relationship. The length-frequency relationship for Atlantic bumper from all stations is swmarized in Table 54, This species occurred in South Carolina estuaries from July to November and was abundant only in September and October. Total lengths ranged from 43-92 mm in August, 38-112mm in September, and 38-132 mm in October.

Distribution and relative abundance. In the North Edisto River, 59 Atlantic bumper, with a total weight of 0.3 kg , were caught during the year (Table 10). In this estuary, the species ranked l3th in numerical abundance, constituting $0.2 \%$ of the total number, and $26 t h$ in weight, representing $0.2 \%$ of the total fish biomess for the 12 -month period. This fish was caught in the North Edisto only in late summer and fall, between August and November, with peak abundance occurring in September (Table 55).

In the South Edisto River, 491 Atlantic bumper, with a total weight of 2.9 kg , were caught during the year (Table l2h. In this estuary,

Table 54. Length-frequency relationship for Chloroscombrus chrysurus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.

Total   Length Interval (mm)	Month											
	$\frac{1973}{\text { Feb. }}$	Mar .	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\mathrm{Jan}}$
$38-42$								1	4			
43-47							3					
48-52						1						
53-57							2	2	1			
58-62								1	1			
63-67							5	3	1	1		
68-72							5	22	1			
73-77							2	47	3			
$78-82$							1	96	5			
83-87						1		59	3			
88-92							1	22	6			
93-97								8	4	1		
98-102								3	4	1		
103-107								2				
108-112								1	3	1		
113-117									2			
118-122									2			
123-127									3			
128-132									1			
Mean Total												
Length (mm)						67	65	81	89	92		

Table 55. Humerical abundance of Chioroscombrus chry Eurus callected by bottom trawl monthly in the North Fdisto, South EAisto, and Coover Rivers and quarterly in other South Carolina coastal regions from Febmary, 1973 through Jenuary, 1974.

Month	Monthly Sampling (Intensive Phase)					Guarterly Sampling (Extensive Phage)				
	Morth   Edisto	South   Edisto	Cooper River	```Tatal catch by Month```	Percent of Total Cateh	Northern Region	Charleston Region	Southern Region	Total Cateh by Quarter	Percent of Total Catch
1973										
February				0	0.0					
March				0	0.0					
April				0	0.0				0	0.0
May				0	0.0					
June				0	0.0					
July				0	0.0		1	1	2	8.0
August	1	15	2	17	3.1					
Septenber	46	466		51.2	92.5					
October	11	10		21	3.8	1	19	3	23	92.0
November	1		2	3	0.5					
December				0	0.0					
2974										
January	-			0	0.0	-	-	-	0	0.0
Total Catch										
Percent of										
Total Catch	10.6	88.7	0.5		100.0	4.0	80.0	16.0		100.0
Grand Total	d stati	cambine	578							

the species ranked fifth in mumerical abundance, constituting $4.9 \%$ of the total number, and seventh in weight, representing $2.9 \%$ of the total fish biomass for the 12 -month period. This fish was caught in the South Edisto only in late summer and early fall, between August and October, with the majority of the year's catch occurring in September (Table 55).

In the Cooper Rfver, only 3 Atlantic bumper, together weighing $<0.1 \mathrm{~kg}$, were caught during the year in August and November (Table 14). In this estuary, the species ranked 27 th in numerical abundance, constituting < $0.1 \%$ of the total number, and $43 r$ d in weight, representing <0.1\% of the total fish biomass for the 12 -month period.

Distribution and relative abundance of Atlantic bumper at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also sumarized in Table 55.

Alosa aestivalis (Blueback Herring)

Total catch. During the year, 462 blueback herring (Alosa aestivalis) with a total weight of 1.5 kg , were obtained at all stations combined (Table 7). This species ranked llth in numerical abundance statewide, constituting $0.7 \%$ of the total number, and 33 rd in weight, representing $0.3 \%$ of the total fish biomass for the l2-month period.

Total length, temperature, and salinity ranges. Blueback herring collected in the estuaries during the year had a total length range of 35-307 mm and occurred over a bottom salinity range of $0.1-25.1 \%$ and a bottom temperature range of 11.5 - 29.0 C (Table 8).

Length-frequency relationship. The length-frequency reletionship for blueback herring from all stations is summarized in Table 56 . This species was present during 10 of the 12 months sampled. Total lengths ranged from 48-307 mm in February, 33-52 mm in July, and $53-82 \mathrm{~mm}$ in January, 1974. Those caught in February, ranging from $48-77 \mathrm{~mm}$, were fish spawned the previous spring and were approximately ten months in age. All of those obtained from June through January were young-of-the-year. These young herring at a total length range of $33-62 \mathrm{~mm}$ in June can be further traced from 38-72 mm in August to 43-62 mm in October.

Distribution and relative abundance. In the North Edisto River, 66 blueback herring, with a total weight of 0.1 kg , were caught in one tow in February (Table 10 and Trable 57). In this estuary, the species ranked loth in numerical abundance, constituting $0.2 \%$ of the total number, and 36 th in weight, representing $0.1 \%$ of the total fish biomass for the l2-month period.

In the South Edisto River, 16 blueback herring, with a total weight of <0.1 kg, were caught during the year (Table 12). In this estuary, the species ranked $29 t h$ in numerical abundance, constituting $0.2 \%$ of the total number, and 36 th in weight, representing $<0.1 \%$ of the total fish biomass for the l2-month period. This fish was present in South Edisto bottom trawl catches only during the $2-m o n t h$ period of August and September (Table 57).

In the Cooper River, 373 blueback herring, with a total weight of 1.4 kg , were caught during the year (Table 14). In this estuary, the species ranked eighth in numerical abundance, constituting $3.6 \%$ of the total number, and 16 th in weight, representing $1.0 \%$ of the total



Montl
fish biomass for the 12 -month period. This fish occurred in Cooper River bot tom trawl catches during 10 of the 12 months, with peak abundance occurring in the estuary in January (Table 57). Distribution and relative abundance of blueback herring at adaitional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also summarized in Table 57.

## Trinectes maculatus (Hogchoker)

Total catch. During the year, 399 hogchoker (Trinectes maculatus) with a total weight of 3.5 kg , were obtained at all stations combined (Table 7). This species ranked l2th in numerical abundance statewide, constituting $0.6 \%$ of the total number, and 19th in weight, representing $0.6 \%$ of the total fish biomass for the 12 -month period.

Total length, temperature, and salinity ranges. Hogchoker collected in the estuaries during the year had a total length range of $21-152 \mathrm{~mm}$ and occurred over a bottom salinity range of $<0.1$ - $32.3 \%$ and a bottom temperature range of $6.6-30.5 \mathrm{C}$ (Table 8).

Length-frequency relationship. The length-frequency relationship for hogehoker from all stations is sumarized in Table 58. This species was present in South Carolina estuaries throughout the year. Total lengths ranged from 38-152 mm in April, 48-132 mam in July, and 18-152 mm in December. The hogchoker has an extended spaming season in the Carolinas, from at least May to August (Hildebrand and Cable, 1938). As a result young-of-the-year, probably the progeny of the previous year's late spawners, were present at the start of the study in February. This year-class can be traced from February to August, with

Table 58. Length-frequency relationship for Trinectes maculatus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.

Total   Length Interval (mm)												
	1973					Mont						1974
	Feb.	Mar.	Apr .	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.
18-22											1	
23-27							1				1	
28-32										1		
$33-37$		1							1	1	1	
38-42		2	3		1				1	3		
43-47			5	1	2				1	2	2	2
48-52	2	3	9	3	1	2			6	5	3	7
53-57		5	8	8	2	5	2	2	3	7	13	4
58-62	1.	3	20	15	1	5	2		5	9	20	8
$63-67$		1	13	15	1	4	2		14	4	9	7
68-72		2	5		3		2	1	11	7	4	2
73-77					1			1	3	2	3	4
78-82			1			2		1				1
83-87					1	2					1	1
88-92					1							
93-97				1		1				1		1
98-102						1						
103-107						2		1	1		.	
108-112					1	1	1	3	1	1		
113-117							2	1	1			
118-122			1					1	2	1	1	
123-127			1		1			2	2			
128-132					1	2		3	2			
133-137									2			
138-142								1		1		
143-147								1				
148-152			1	1				1			1	
Mean Total Length (mm)	53	57	61	60	73	79	72	109	74	63	69	62

total lengths ranging from about 33-72 mom in March, 38-67min June, and $53-72 \mathrm{~mm}$ in August. From August to October new recruits, apparently from the current year's spawning, first appeared in trawl catches. Further tracing of these young-of-the-year is difficult due to possible overlap in the fall between these fish and the earlier year-class, now a. year old.

Distribution and relative abundance. In the North Edisto River, 63 hogchoker, with a total weight of 1.6 kg , were caught during the year (Table 10). In this estuary, the species ranked lith in numerical abundence, constituting $0.2 \%$ of the total number, and 13 th in weight, representing $0.9 \%$ of the total fish biomass for the 12 -month period. This fish occurred in North Edisto bottom trawl catches in relatively low numbers during the 9 -month period from April through December, but was absent during the colder months from January - March (Table 59).

In the South Edisto River, 204 hogchoker, with a total weight of 1.0 kg , were caught during the year (Table l2). In this estuary, the species ranked ninth in mumerical abundance, constituting $2.0 \%$ of the total number, and 16 th in weight, representing $1.0 \%$ of the total fish biomass for the l2-month period. This fish occurred in South Edisto bottom trawl catches throughout the year, with peak abundance occurring during November and December (Table 59).

In the Cooper River, 52 hogchoker, with a total weight of 0.3 kg , were caught during the year (Table 14). In this estuary, the species renked 14 th in numerical abundance, constituting $0.5 \%$ of the total number, and 26 th in weight, representing $0.2 \%$ of the total fish biomass for the l2-month period. This fish occurred in Cooper River bottom

Table 59. Numerical abundance of minectes maculatus collected by bottom trawl monthly in the North Edisto, South Edisto, and Cooper Rivers an quarterly in other South Carolina coastal regions from February, 1973 through January, 1974.

Month	Monthly Sempling (Intensive Phese)					Quarterly Simpling (Extensive Phase)				
	North Edisto	South   Edisto	Coofer River	$\begin{aligned} & \text { Total } \\ & \text { Catch by } \\ & \text { Month } \end{aligned}$	Percent of Totel Cetch	Northern Region	Querterly Charleston Region	ling (Ex Southern Region	ye Phase Total Catch by Quarter	Percent of Total Cater.
1973										
Februery										
March		3		3	0.9					
April	2	8	8	13	4.1					
May	10	1	22	32	10.0	10	18	10	38	43.2
June	8	12	3	14	4.4			10	38	43.2
July	11	10		18	5.6					
August	3	10 1		21	6.6	4	1	4	9	10.2
September	12	5	7	11	3.4				,	10.2
October	8	11	2	19	6.0					
November	4	42	5	24	7.5	14	2	7	23	26.1
December	5	95	4	+464	14.4 32.6					
1974										
January	-	13	1	14	4.4					
			1	1	4.4	+	$\underline{\square}$	11	18	20.4
Total Cateh										
by Region	63	204	52	319		35	21	32	80	
Percent of										
Total Catch	19.7	63.9	16.3		100	39.8				
					100.0	39.8	23.9	36.4		100.0
Grand Totel (All months and stations combined) $=407$										

trawl catches in relatively low numbers during 8 of the 12 months: March through May, August through October, and December through January (Table 59).

Distribution and relative abundance of hogchoker at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also summarized in Table 59.

Symphurus plagiusa (Blackcheek Tonguefish)

The blackcheek tonguefish (Symphurus plagiuss) is the most common species of Symphurus on the Atlantic and Gulf coasts of the United States (Ginsburg, 1951) and ranges from New York to the Bahamas and Greater Antilles (Ginsburg, 1951; Böhlke and Chaplin, 1968; Topp and Hoff, 1972). This fish is the most abundant cynoglossid species in South Carolina inshore waters and is present in some life stage during all months of the year and in all major estuaries or coastal regions of the state (Tables 5 and 60). Fowler (1945) earlier observed wide distribution for this species in South Carolina coastal waters. Dehlberg and Odum (1970) and Hoese (1973) also found this species throughout the year in several Georgia estuaries.

Total catch. During the year, 362 blackcheek tonguefish with a total weight of 6.0 kg , were obtained at all stations combined (Table 7). This species ranked l3th in numerical abundance statewide, constituting $0.6 \%$ of the total number, and I4th in weight, representing $1.1 \%$ of the total fish biomass for the 12 -month period.

Tsble 60. Length~frequency relationship for Symphurus plagiusa collected by bottom trawl in South Carolina eatuaries (all stations combined) from February, 1973 through January, 1974.

Total   Length   Interval. (min)	Month											
	$\frac{1973}{\text { Feb. }}$	Mar .	Apr.	Mry	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{J a n .}$
53-57								1				
58-62												
63-67										1		
68-72			2							1		
73-77											2	
78-82			1							1	3	
$83-87$		1	2			1				1	1	
88-92			1			1			1	1	4	2
93-97	1		3		2		2	1	3	3	5	1
98-102	1	1	2	1		2	1	2		3	1	4
103-107	2	4	2		1	2		1	6		1	1
108-112	2	1	5	3		3		5	4	1	2	8
113-117	2	11	11	1	1			2	5	1	6	9
118-122	1	11	11			2			3	2	4	6
123-127	1	12	8			1			3	1	4	8
128-132	1	1	6	1					1	3	7	13
133-137	1	6	8							2	5	7
138-142		17	3						1	2	5	7
143-147	2	7	2	1							2	3
148-152			1	1							1	2
153-157		1										2
Mean Total												
Length (mm)	118	115	118	121	102	107	97	107	112	114	115	124

'otal length, temperature, and salinity ranges. Blackcheek tonguefisil collected in the estuaries during the year had a total length range of 53-156 mm and occurred over a bottom salinity mange of 0.1-34.2\% and a bottom temperature of 8.6-30.5 C (Table 8).

Length-frequency relationship. The length-frequency relationship for blackcheek tonguefish from all stations is sumarized in Table 60. At various locations throughout its range, this species spawn at sea over extended periods of time. In North Carolina, Hildebrand and Cable (1930) found the spawning season extending from May to October, with the height of spawning probably occurring in June. In Floride, Topp and Hoff (1972) reported that spawning occurred as early as February and continued to September.

The smallest specimen in the present study was captured in September, suggesting that spawning and early recruitment in South Caroline occur during roughly the same season as in other southeastern Atlantic states (Table 60). Fish caught in February had total lengths ranging from 93 - 147 mm . Since blackcheek tonguefish growth rates were slow (Hildebrand and Cable, 1930), these fish were probably not results of the previous summer-fall spawning.

This species was present in South Carolina estuaries at modal lengths of 140 mm and 120 mm in March and April. From May through August, only a few small tonguefish were available to the trawl, possibly due to seaward migration for spaming, which occurs about this time (Hildebrand and Cable, 1930). In September newly-recruited young-of-theyear, represented by a single specimen at a total length of about 55 mm , once again appeared in the estuaries. Blackcheek tonguefish ranged in
total lengths from 63-142 mm in November, 73-152 mm in December, and 83-157mm in January. Further interpretations of these dara are difficult due to possible overlap of mor'e than one year class.

Distribution and relative abundance. In the North Edisto River, 101 blackcheek tonguefish, with a total weight of 1.6 kg , were caught during the year (Table 10). In this estuary, the species ranked eighth in numericsi abundance, constituting $0.4 \%$ of the total number, and 12 th in weight, representing $1.0 \%$ of the total fish biomass for the l2-month period. This fish was present in the North Edisto during all months, with relatively even seasonal distribution (Table 61). Slight peaks in abundance were noted in April, December, and January.

In the South Edisto River, 147 blackcheek tonguefish, with a total weight of 2.6 kg , were caught during the year (Table 12). In this estuary, the species ranked loth in numerical abundance, constituting $1.5 \%$ of the total number, and ninth in weight, representing $2.7 \%$ of the total fish biomass for the 12 -month period. This fish was present in the South Edisto during 9 of the 12 months (Table 6l). Low sbundance during May - August coincides with probable seaward migration for spawning.

In the Cooper River, 38 blackcheek tonguefish, with a total weight of 0.6 kg , were caught during the year (Table 14). In this estuary, the species ranked 16 th in numerical abundance, constituting $0.4 \%$ of the total number, and 22nd in weight, representing $0.4 \%$ of the total fish biomass for the 12 -month period. This fish was present in the Cooper River during 8 of the 12 months (Table 61).

Table 6l. Numerical abundance of Symphurus plagiusa collected by bottom traw mor.thy in the North Edisto, South Eaisto, and Zooper Rivers and quarterly in other Soush Carolina coastal regions frow Fetruary, iopit through Jamaty, 1974.

Month	Monthly Sampling (Intersive Fhase)					Quarterly Sampline (Extensive Phase)				
	North   Edisto	South   Edisto	Cooper River	$\begin{aligned} & \text { Cota } \\ & \text { Cate2. Ey } \\ & \text { Son } h \end{aligned}$	Percent of Tctei Catch	$\begin{aligned} & \text { Northern } \\ & \text { Region } \end{aligned}$	Charleston Region	Southers Region	$\begin{aligned} & \text { Totel } \\ & \text { Catch by } \\ & \text { Quarter } \end{aligned}$	Percent of 'iotel Catch
1973										
February	5	2	7	14	4.9					
March	5	64	2	71	24.8					
April	34	13	I	1.2	16.3	2	13	1	15	19.7
May	5		3	6	2.8					
June	${ }_{4}$	2		6	2.1					
July	4			$!$	1.4	5	1	3	9	11.8
Auguet	2		1	3	1.0					
September	3	6	3	12	-. 2					
Detober	1	2	15	15	6. 3	3		7	10	13.3
Hovember	4	$1{ }^{1}$		16	6.3					
December	14	37		51	17.8					
1974										
January	20	7.	6	33	11.5	14	- - -	28	42	55.3
Totel Catch by Region	103	147	38	286		23	14	39	76	
Percent of										
Total Catch	35.3	51.3	13.2		100.0	30.3	18.4	52.3		103.0
Grand Total	d statio	combine	$=362$							

Distribution and relative abundance of blackcheek tonguefish at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also sumarized in Table 61. Dorosoma petenense (Threadfin Shad)

Total catch. During the year, 327 threadfin shad (Dorosoma petenense) with a total weight of 0.9 kg , were captured at all stations combined (Table 7). This species ranked 14 th in numerical abundance statewide, constituting $0.5 \%$ of the total number, and 36 th in weight, representing $0.2 \%$ of the total fish biomass for the 12 month period.

Total length, temperature, and salinity ranges. Threadfin shad collected in the estuaries during the year had a total length range of 36-134 mm and occurred over a bottom salinity range of $0.1-32.3 \% / 00$ and a bottom temperature range of $16.6-29.9 \mathrm{C}$ (Table 8).

Length-frequency relationship. The length-frequency relationship for threadfin shad from all stations is sumarized in Table 62. Some life history stoge of this species is present during most of the year. Total lengths ranged from 68-137min February, 33-122 mm in July, and 38-102 mm in January.

Distribution and relative abundance. In the North Edisto River, only 10 threadfin shad, with a total weight of 0.1 kg , were caught during the year (Table 10). In this estuary, the species ranked 27 th in numerical abundance, constituting $<0.1 \%$ of the total number, and 46 th in weight, representing $0.1 \%$ of the totel fish biomess for the

Table 62. Length-frequency relationship for Dorosoma petenemee collected by bottom trewl in South Carolina eatuaries (all stations combined) from February, 1973 through January, 1974.

Total	Month											
Length Interval (min)	$\frac{\overline{1973}}{\text { Feb. }}$	Mer.	Apr .	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\operatorname{Jan} .}$
33-37						1						
$38-42$												2
43-47												5
48-52						2	1					20
53-57						4	1					13
$58-62$						5	1				1	11
63-67						1						4
$68-72$	1	1				2						5
73-77												2
78-82	2		1						1			1
$83-87$	1											
$88-92$	3		3		1	5						
93-97	3					13						
98-102	1					7	2					1
103-107	1					4	1					
108-112	1.											
113-217					1							
118-122	1					1						
123-127												
128-132	2		1									
133-137	1											
Mean Total   Length (mm)	100	70	96		102	84	74		80		60	62

12-month period. This fish was present in North Edisto bottom trawl catches only during February, Juiy, and October (Table 63).

In the South Edisto River, this fish was completely absent from all bottom trawl catches throughout the year (Table 63).

In the Cooper River, 286 threadfin shad, with a total weight of 0.7 kg , were caught during the year (Table 14). In this estuary, the species ranked loth in numerical abundance, constituting $2.8 \%$ of the total number, and 19 th in weight, representing $0.5 \%$ of the total $f i s h$ biomass for the l2-month period. With the exception of March and May, this fish was present in Cooper River bottom trawl catches from December through August, with peak abundance in Jenuary (Table 63).

Distribution and relative abundance of threadfin shad at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also summerized in Table 63.

## Anchoo hepsetus (Striped Anchovy)

Total catch. During the year, 216 striped anchovy (Anchoa hepsetus) with a total weight of 1.7 kg , were obtained at all stations combined (Table 7). This species ranked 15 th in numerical abundance statewide, constituting $0.3 \%$ of the totel number, and 30 th in weight, representing $0.3 \%$ of the total fish biomass for the 12-month period.

Total length, temperature, and salinity ranges. Striped anchovy collected in the estuaries during the year had a total length range of 58 - 140 mand occurred over a bothom salinity range of 8.8 - $34.4 \% / 00$ and a bottom temperature range of $16.9-30.5 \mathrm{C}$ (Table 8).

Table 63. Numerical abundance of Dorosoma petenense collected by bottom trawl monthy in the ilorth Edisto, South Edisto. and Cooper Rivers and quarterly in other South. Caroline coastal regions from February, 1973 through January, 1974.

Month	Monthly Sampling (Intensive Phase)					Quarterly Sampling (Extenstve Phase)				
	North   Edisto	South   Edisto	Cooper River	$\begin{aligned} & \text { Total } \\ & \text { Catch by } \\ & \text { Month } \end{aligned}$	Percent of Total Catch	Northern Region	Charleston Region	Southern Region	Total Catch by quarter	Percent of Total Catch
1973										
February	5		12	17	5.7					
March				0	0.0					
April			1	1	0.3		2	2	4	12.9
May				0	0.0					
June			2	2	0.7					
July	4		12	16	5.4	7	28	2	27	87.2
August			2	2	0.7					
September				0	0.0					
October	2			1	0.3				0	0.0
November				0	0.0					
December			1	1	0.3					
19740										
Total Catch										
by Region	10	0	286	296		7	20	4	31	
Percent of										
Total Caten	3.4	0.0	96.6		100.0	22.6	64.5	12.9		100.0
Grand Totel (All months and stations combined) $=327$										

Length-frequency relationship. The length-frequency relationship for striped anchovy from all stations is sumarized in Table 64. This species was most prevalent in the fall of the year, with total lengths ranging from 63-122 min September, 73-132 mmin October, and 78-132mm in November.

Diatribution and relative abundance. In the North Edisto River, 39 striped anchovy, with a total weight of 0.2 kg , were caught during the year (Table 10). In this estuary, the species ranked 17 th in numerical abundance, constituting $0.1 \%$ of the total number and 28 th in weight, representing $0.2 \%$ of the total fish biomass for the 12 -month period. This fish was present in North Edisto bottom trawl catches in small numbers from May to November (Table 65).

In the South Edisto River, 79 striped enchovy, with a total weight of 0.7 kg , were caught during the year (Table 22). In this estuary, the species ranked 23 th in numerical abundance, constituting $0.8 \%$ of the total number, and 18 th in weight, representing $0.7 \%$ of the total fish biomass for the 12 -month period. This fish was present in South Edisto bottom trawl catches only during fall months, from September - November (Table 65).

In the Cooper River, 32 striped anchovy, with a total weight of 0.3 kg , were caught during the year (Table 14). In this estuary, the species ranked 17 th in numerical abundance, constituting $0.3 \%$ of the total number, and 27 th in weight, representing $0.2 \%$ of the total fish biomass for the 12 month period. This fish occurred in Cooper River bottom trawl catches in low numbers during 4 months: May, September, October, and December (Table 65).

Table 64. Length-frequency relationahip for Anchoa hepsetus collected by bottom trawl in South Carolina eatuaries (all stations combined) from February, 1973 through January, 1974.

Total   Length Interval (mm)	Month											
	1973											1974
	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oet.	Nov.	Dec.	Jan.
$58-62$											1	
63-67								2				
68-72						2						
$73-77$								2	1			
78-82							1		7	3		
83-87								2	16	4		
88-92								2	26	3		
93-97							1	1	27	4		
98-102				2				2	14	4		
103-107				9				4	3	10	1	
108-112				6				4	8	10	1	
113-117				2				1	8	6		
118-122				4				1	1	2		
123-127			1	1	3				1			
128-132				1					1	1		
$133-137$												
138-142			1									
Mean Total												
Length (mm)			132	111	125	70	87	96	95	103	92	

Table 65. Numerical abundance of Anchoa hepsetus collected by bottom trawl monthly in the North Edisto, South Edisto, and Cooper Rivers and quarterly in other South Carolina coastal regions from February, 2973 through January, 1974.

Month	Monthly Sampling (Intensive Phase)					Quarterly Sampling (Extensive Phase)				
	North   Edisto	South EAisto	Cooper River	```Total Catch by Month```	```Fercent of Totel Cateh```	Northern Region	Charleston Region	Southern Region	Total Catch by Quarter	Percent of Total Cateh
1973										
February				0	0.0					
March				0	0.0					
April				0	0.0		2		2	3.0
May	12		25	37	24.7					
June	3			3	2.0					
July	1			1	0.7			2	2	3.0
August	1			1	0.7					
September	13	2	3	18	12.0					
October	8	72	2	82	54.6	14	42	6	62	93.9
November	1	5		6	4.0					
December			2	2	1.3					
1974										
Jamuary	-	-	-	0	0.0	-	$\longrightarrow$	-	0	0.0
Total Catch by Region	39	79	32	150		14	44	8	66	
Percent of Total Cateb	26.0	52.7	21.3		100.0	21.2	66.6	12.1		100.0
Grand Total	stati	combine	216							

Distribution and relative abundance of striped anchovy at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also sumarized in Table 65.

Opisthonema Oglinum (Atlantic Thread Herring)

Total catch. During the year, 214 Atlantic thread herring (Opisthonems oglinum) with a total weight of 1.6 kg , were obtained at all stations combined (Table ?). This species ranked 16 th in numerical abundance statewide, constituting $0.3 \%$ of the total number, and 32nd in weight, representing $0.3 \%$ of the total fish biomass for the 12-month period.

Total length, temperature, and salinity ranges. Atlantic thread herring collected in the estuaries during the year had a total length range of $40-174 \mathrm{~mm}$ and occurred over a bottom salinity range of $0.1-34.2^{\circ} / 00$ and a bottom temperature range of 12.7 - 30.1 C (Table 8).

Length-frequency relationship. The length-frequency relationship for Atlantic thread herring from all stations is summarized in Table 66. This species was only present in the estuaries from August to January. Total lengths ranged from 43-82 min in August and 38-277 mm in October, with single specimen in January at 138 mm .

Distribution and relative abundance. In the North Edisto River, 26 Atlantic thread herring, with a total weight of 0.2 kg , were caught during the year (Table 10). In this estuary, the species ranked 20th in numerical abundance, constituting $0.1 \%$ of the total number, and 30 th in weight, representing $0.1 \%$ of the total fish biomass for the

Table 66. Length-frequency relationship for Opisthonema oglinum collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.


12-month period. This fish was present in low numbers in North Edisto bottom trawl catches from late simmer through fall, August November (Teble 67).

In the South Edisto River, only four Atlantic thread herring were collected during the year, two each in August and September (Table 67). Together these fish weighed 0.1 kg (Table 12). In this estuary, the species ranked 26 th in numerical abundance, constituting $<0.1 \%$ of the total number, and 26 th in weight, representing $0.1 \%$ of the total fish biomass for the 12 -month period.

In the Cooper River, 45 Atlantic thread herring, with a total weight of 0.1 kg , were caught during the year (Table 14). In this estuary, the species ranked 15 th in numerical abundance, conatituting $0.4 \%$ of the total number, and 32 nd in weight, representing $0.1 \%$ of the total fish biomass for the 12 -month period. This fish was present in small numbers in Cooper River bottom trawl catches and only appeared during August - October (Table 67).

Distribution and relative abundance of Atlantic thread herring at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also summarized in Table 67.

## Trichiurus lepturus (Atlentic Cutlassfish)

Total catch. Over the 22 month period, 189 Atlantic cutlassfish (Trichiurus lepturus) with a total weight of 7.6 kg , were obtained at all stations combined (Table 7). This species ranked 17 th in numerical abundance statewide, constituting $0.3 \%$ of the total number, and $13 t h$ in weight, representing $1.4 \%$ of the total fish biomass for the l2-month period.

Table 67. Numerical abundance of Opisthonema oglinum collected by bottom trawl monthly in the North Fdisto, Gouth Edistc, and Cooper Fivers and quarteriy in other South Carolina coastal regions from February, 1973 through Jandary, 1974.

Month	Monthly Sampling (Intensive Phase)					Quarterly Sampling (Extensive Phase)				
	North Edisto	South Edisto	Cooper River	Total Catch by Month	Percent of Total Catch	Northern Region	Charlegton Region	Southern Region	Total Catch by Quarter	Percent of Total Catch
1973										
February				0	0.0					
March				0	0.0					
April				0	0.0				0	0.0
May				0	0.0					
June				0	0.0					
July				0	0.0				0	0.0
August	3	2	1	6	8.0					
September	12	2	41	55	73.3					
October	4		3	7	9.3		41	2	43	30.9
Noventier	7			7	9.3					
December				0	0.0					
1974										
January	-			0	0.0	1	95		96	69.0
Total Cateh by Region	26	4	45	75		1	136	2	139	
Percent of Total Catch	34.7	5.3	60.0		100.0	0.7	97.8	1.4		100.0
Grend Total	nd ste.	combi	$=214$							

Total length, temperature, and salinity ranges. Atlantic cutlassfish collected in the estuaries during the year had a total length range of 136 - 667 mm and occurred over a bottom salinity range of $0.7-34.4^{\circ} / 00$ and a bottom temperature range of $16.2-30.6 \mathrm{C}$ (Table 8). Length-frequency relationship. The length-frequency relationship for Atlantic cutlassfish from all stations is sumarized in Table 68. This species occurred during warmer months of the year in South Carolina estuaries. Atlantic cutlassfish first appeared in April at a total length of $121-380 \mathrm{~mm}$. These fish can be further traced from a modal lergth of 290 mm in May to a modal length of 450 mm in July.

Distribution and relative abundance. In the North Edisto River, 73 Atlantic cutlassfish, with a total weight of 3.5 kg , were caught during the year (Table 10). In this estuary, the species ranked ninth in numerical abundance, constituting $0.3 \%$ of the total number, and loth in weight, representing $2.0 \%$ of the total fish biomass for the 12-month period. This fish was present in North Edisto bottom trawl catches only during the summer (June - August), with peak abundance in June (Table 69).

In the South Edisto River, five Atlantic cutlassfish, with a total weight of 0.2 kg , were caught during the year (Table 12). In this estuary, the species ranked 25 th in numerical abundance, constituting $0.1 \%$ of the total number, and $23 r a$ in weight, representing $0.2 \%$ of the total fish biomass for the 12 -month period. This fish was present in the South Edisto bottom trawl catches in low numbers, and only during the summer months of June and August (Table 69).

In the Cooper River, 25 Atlantic cutlassfish, with a total weight of 0.6 kg , were caught during the year (Table 14). In this estuary, the

Table 68. Length-frequency relationship for Trichiurus lepturus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.

	Month											
Length Interval (iㅔ)	$\frac{\overline{2973}}{\overline{F e b}}$	Mar .	Apr .	May	June	Juzy	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\sqrt{3} \mathrm{n} .}$
121-140			1									
141-160												
161-180												
181-100						1						
201-220			5									
222-240			1			1						
241-260			3	2								
261-280			2	3								
281-300			3	7								
301-320			1	7			1					
321-340				1	3		1					
341-360				1	7		1					
361-380			2	1	14	1						
381-400					21		1					
401-420					10							
421-440				1	4	2	1					
441-460					1	10						
461-480					1	6						
481-500						4	1					
501-520						1						
521-540						1	1					
541-560							4					
561-580						1		1				
581-600						2						
601-620							1					
$621-640$												
$641-660$												
$661-680$						2						
Nean Total Length (m)			150	197	279	364	363	463				

Table 69. Numerical abundance of Trichimrus lepturus collected by bottom trawl monthly in the ivorth Edisto, South Edisto, and Cooper Fivers snd quarterly in other South Carclina coastal regions from Fobruary, 1973 through Janaary, 197!.

Month	Monthly Sampling (Intensive Phase)					Quarterly Sampling (Extensive Phase)				
	North Edisto	South Edisto	Cooper   River	Total Catch by Month	Percent of Total Catch	Northern Region	Charleston Region	Southern Region	Total   Catch by Quarter	Percent of Total Catch
1973										
Februery				0	0.0					
March				0	0.0					
April				0	0.0	3		51	54	62.8
May			22	22	21.4					
June	63	2	2	66	64.1					
July	1			1	1.0	1	2	29	32	37.2
August	9	4		13	12.6					
September			1	1	1.0					
October				0	0.0				0	0.0
November				0	0.0					
December				0	0.0					
1974										
January	-	-	-	0	0.0	-	.		0	0.0
Total Catch by Region	73	5	25	103		4	2	80	86	
Percent of Total Catch	70.9	4.8	24.3		100.0	4.6	2.3	93.1		100.0
Grand Total	and stat	combin	$=189$							

species ranked l8th in numerical sbundance, constituting $0.2 \%$ of the total number, and 21 st in weight, representing $0.5 \%$ of the total fish biomass for the $12-m o n t h$ period. This fish was present in Cooper River bottom trawl catches in early sumer and fall, during May, June, and September (Table 69).

Distribution and relative abundance of Atlantic cutlassfish at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also sumarized in Table 69.

## Peprilus alepidotus (Harvestfish)

Total catch. During the year, 151 harvestfish (Peprilus alepidotus) with a total weight of 1.8 kg , were obtained at all stations combined (Table 7). This species ranked l8th in numerical abundance statewide, constituting $0.2 \%$ of the total number, and $28 t h$ in weight, representing $0.3 \%$ of the total fish biomass for the 12-month period.

Total length, temperature, and salinity ranges. Harvestfish collected in the eatuaries during the year had a total length range of 20-131 mm and occurred over a bottom salinity range of $0.9-33.2 \%$ and a bottom tempersture range of 17.4-30.1 C (Table 8).

Length-frequency relationship. The length-frequency relationship for harvestfish from all stations is sumarized in Table 70. This fish was present in South Carolina estuaries primarily from July to December, with individuals obtained occasionally during April and May. Total lengths ranged from 18 - 62 min $\operatorname{in}$ July, $33-132 \mathrm{~mm}$ in September, and 83-112 mm in November.

Table 70. Length-frequency relationship for Peprilus elepidotus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.

Total   Length   Interval   (mm)	Month											
	$\begin{aligned} & 1973 \\ & \text { Feb. } \end{aligned}$	Mar.	Apr .	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\operatorname{Jan}}$
18-22						1						
23-27												
28-32			1			1						
$33-37$						5		1	3			
$38-42$						10	2	1	7			
$43-47$			1			9			4			
48-52						4	1	1	6			
53-57						3	2	2	1			
58-62						1	6	3	2			.
63-67							9	7	1			
68-72							9	2	1			
73-77							3	2				
78-82							3	4				
$83-87$							2	4		1		
88-92								1		2		
93-97				1				3	1	1		
98-102				1				1	1	2		
. $03-107$								1	1	1	2	
.08-112								2	1	1	2	
13-117												
.18-122								1			1	
. 23 - 127								1			1	
28-132								1				
ean Total ength (mm)			37	97		43	51	78	55	102	112	

Distribution and relative abundance. In tre North Eidste River, 60 harvestfish, with a total weight of 0.9 kg , were calcght during the year (Table 10). In this estuary, the species ranked l2th in numerical abundance, constituting $0.2 \%$ of the total number, and $17 \% \mathrm{k}$ in weight, representing $0.5 \%$ of the total fish biomass for the 12 -month period. This fish was present in North Edisto bottom trawl catches during 8 months of the year (mable 71). Farvestfish were absent during the coldest winter months, from January - March and unaccountably in June.

In the South Edisto River, this fish was completely absent from all bottom trawl catches at all stations throughout the year (Table 7l).

In the Cooper River, 55 harvestfish, with a total weight of 0.7 kg , were caught during the year (Table 14). In this estuary, the species ranked 12 th in numerical abundance constituting $0.5 \%$ of the total number, and 18 th in weight, representing $0.5 \%$ of the total fish biomass for the 12 -month period. This fish was present in Cooper River bottom trawls in May and July - November (Table 71). Harvestfish were absent from catches during the colder months, from December until early spring. Distribution and relative abundance of harvestfish at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also sumarized in Table 71.

```
Arius felis (See Catfish)
```

Total catch. During the year, 90 sea catfish (Arius felis) with a total weight of 10.0 kg , were obtained at all stations combined (Table 7). This species ranked 19 th in numerical abundance statewide, constituting $0.1 \%$ of the total number, and loth in weight, representing



Month	Monthiy Sempling (Irtensive Phase)					Quarterly Sampling (Extersive Phase)				
	North   Edisto	South   Edisto	Cooper   River		```Percent of Total Catch```	Sorthern Region	Charlestor. Region	Soutrer: Region	$\begin{aligned} & \text { Total } \\ & \text { Cusch by } \\ & \text { Ruarier } \end{aligned}$	Fercent of Total Getc):
1973										
February				0	0.0					
March				0	0.0					
April	2			2	1.7				0	0.0
May	3		5	8	6.9					
June				0	0.0					
July	5		2	7	6.2	5	3	15	26	72.2
August	23		13	36	31.3					
Septeriber	17		$2^{\text {L }}$	41	36.5					
October	3		5	8	6.9			10	10	27.8
November	1		7	8	6.9					
December	6			6	5.2					
1274										
January			-	0	0.0	-	--m-	-	0	0.0
Total Catch by Region	60	0	55	11.5		5	3	29	36	
Percent of										
Total Catch	52.2	0.0	47.8		100.0	13.9	8.3	77.8		100.0
Grand Total	d stat	combin	$)=151$							

1.8\% of the total fish biomass for the 12 -month period.

Total length, temperature, and salinity ranges. Sea catfish collected in the estuaries during the year had a total length range of 58-296 mm and occurred over a bottom salinity range of 0.2 $33.2^{\circ} / 00$ and a bottom temperature range of $16.8-30.5 \mathrm{C}$ (Table 8).

Length-frequency relationship. The length-frequency relationship for the sea catfish from all stations is sumarized in Table 72. Total lengths ranged from $148-267 \mathrm{~mm}$ in May, $153-282 \mathrm{~mm}$ in July, and 58-252min September.

Distribution and relative abundance. In the North Edisto River, 63 sea catfish, with a total weight of 7.4 kg , were caught during the year (Table 10). In this estuary, the species ranked llth in numerical abundance, constituting $0.2 \%$ of the total number, and sixth In weight, representing $4.3 \%$ of the total fish biomass for the 12 -month period. This fish was present in North Edisto bottom trawl catches from May - October, with the majority of the catch occurring from late spring to mid-summer (Table 73).

In the South Edisto River, only six sea catfish with a total weight of 0.3 kg , were caught during the year (Table 12). In this estuary, the species ranked 24 th in numerical abundance, constituting $0.1 \%$ of the totail number, and 19 th in weight, representing $0.3 \%$ of the total fish biomess for the 12 -month period. This fish whs present in small numbers in South Edisto bottom trawl catches in May and July October (Table 73).

In the Cooper River, only three sea catfish, with a total weight of 0.4 kg , were caught during the year (Table 14), two in May and one
 (all stations combined) from February, 1973 through January, 1974.

Total   Length Interval (mim)	Month											
	$\frac{\overline{1973}}{\mathrm{Feb}}$	Mar .	Apr .	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\operatorname{Jan}^{2}}$
58-62								1				
$\begin{aligned} & 63-67 \\ & 68-72 \end{aligned}$												
$\begin{aligned} & 73-77 \\ & 78-82 \end{aligned}$							1					
83-87							1					
88-92												
$\begin{aligned} & 93-97 \\ & 98-102 \end{aligned}$									1			
103-107												
108-112												
113-117												
118-122									2			
123-127												
128-132									1			
133-137												
138-142												
143-147												
148-152				1								
153-157						1						
158-162				1								
163-167				3	1							
168-172				4								
173-177				2	3							
178-182				1	1	2		1				
183-187					3	4						
188-192				2	4	2						
193-197				1		1						
198-202					1	1						
203-207			1									
208-212						2						
213-217				1		2						
218-222					2	1						

Table 72. (Continued.)

Total Length Interval (mim)	Month											
	1973											1974
	Feb.	Mar .	Apr	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.
223-227					1	1						
228-232					1	2						
233-237					2	7						
238-242			1									
243-247				1	1	2						
248-252				1	1	1		1				
253-257			1	1	2	2						
258-262						3						
263-267				2		1						
268-272					1							
273-277												
278-282			1			1						
283-287												
288-292												
293-297			1									
Mean Total												
Length (mm)			255	195	209	267	82	163	118			




Mentr	Menthly Sempling (Inteosive thase)					Quarteriy saugling (Extensive Prase:				
	North   Edisto	South   Edisto	Cooper River	$\begin{aligned} & \text { Total } \\ & \text { Bateh ry } \\ & \text { ?Antr } \end{aligned}$	Percent O: Total Catc?	$\begin{aligned} & \text { Ncrctiern } \\ & \text { Pegion } \end{aligned}$	Charleston Pegion	Toutilers Region	$\begin{aligned} & \text { Total } \\ & \text { Catct b } \\ & \text { Zuarter } \end{aligned}$	
1973										
Ferruary				0	0.0					
Narch				0	0.0					
April				)	0.0	1		4	5	27.8
May	18	1	2	21	29.2					
June	14			14	19.4					
July	27	2		29	40.3	3		9	$1:$	66.7
August	1	1		2	2.8					
September	2	1		3	4.2					
October	1	1	1	3	4.2			1	1	5.6
Novenber				0	0.0					
December				0	0.0					
2874										
January	-			0	0.0	-	-	--	0	0.1
Total Catch by Region	63	6	3	72		4	0	14	18	
Fercent of Totel Catch	87.5	8.3	4.2		100.0	22.2	0.0	77.8		10
Grand Total	ad stat	combin	$=90$							

In October (Table 73). In this estuary, the species ranked 27 th in numerical abundance, constituting $<0.1 \%$ of the total number, and 24 th in weight, representing $0.3 \%$ of the total fish biomass for the 12 -month period.

Distribution and relative abundance of sea catfish at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also sumarized in Table 73.

Ictalurus punctatus (Channel Catfish)

Total catch. During the year, 77 channel catfish (Ictalurus punctatus) with a total weight of 3.2 kg , were obtained at all stations combined (Table 7). This species ranked 20 th in numerical abundance statewide, constituting $0.1 \%$ of the total number, and 23 rd in weight, representing $0.6 \%$ of the total fish biomass for the 12 -month period.

Total length, temperature, and salinity ranges, Channel catfish collected in the estuaries during the year had a total length range of 56-234 min and occurred over a very low bottom salinity range of $0.1-0.2^{\circ} / 00$ and a bottom temperature range of $8.7-27.8 \mathrm{C}$ (Table 8).

Length-frequency relationship. The length-frequency relationship for channel catfish from all stations is summarized in Table 74. This species occurred during 7 of the 12 months sampled. Total lengths ranged from 203-222 $\operatorname{mm}$ in February, 113 - 227 mm in June, and $53-227 \mathrm{~mm}$ in December. During November and December two year-classes were probably present.

Distribution and relative abundance. In the North Edisto River, only one channel catifish, with a total weight of 0.3 kg , was caught during

Table 74. Length-frequency relationship for Ictalurus punctatus collected by botton trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 1974.

Total   Length   Interval   (mm)	Month											
	$1973$											1974
	Feb.	Mar.	Apr .	May	June	July	Aug.	Sept.	oct.	Nov.	Dec.	Jan.
53-57										1	1	
58-62											2	
63-67										1	7	
68-72											1	
73-77											5	
78-82											2	
83-87											1	
88-92											2	
93-97											1	
98-102										1	1	
103-107											1	
108-112											5	
113-117					1					1	3	
118122										2	3	
123-127			1								1	
178-182		1										
183-187											1	
188-192											2	
193-197		1									1	
198-202										1.	1	
203-207	1									1		
208-212	2		1								3	
213-217		3										
218-222	2									2		
223-227		1			1						2	
$228-232$												
233-237		1										
> 250				1								
Mean Total												
Length (mm)	213	212	167	-250	170					132	118	

the year (Table 10). This specimen was taken in May (Table 75). In this estuary, the species ranked 35 th in numerical abundance, constituting $<0.1 \%$ of the total number, and 27 th in weight, representing $0.2 \%$ of the total fish biomass for the l2-month period.

In the South Edisto River, 61 channel catfish, with a total weight of 1.9 kg , were caught during the year (Table l2). In this estuary, the species ranked 14 th in numerical abundance, constituting $0.6 \%$ of the total number, and $13 t h$ in weight, representing $2.0 \%$ of the total fish biomass for the l2-month period. This fish was present in South Edisto bottom trawl catches during the months of June, November, and December (Table 75).

In the Cooper River, 15 channel catfish, with a total weight of 1.0 kg , were caught during the year (Table 14). In this estuary, the specles ranked 20 th in numerical abundance, constituting $0.1 \%$ of the total number, and 17 th in weight, representing $0.8 \%$ of the total fish biomass for the 12 -month period. This fish was present in some Cooper River bottom trawl catches in small numbers from February - April (Table 75).

No channel catfish appeared at any time during the year in catches from 16 adational stations trawled quarterly in the northern, Charleston, and southern regions of the state (Table 75).

## Opsanus tau (Oyster Toadfish)

Total catch. During the year, 76 oyster toadfish (Opsanus tau) with a total weight of 4.1 kg , were obtained at all stations combined (Table 7). This species ranked 2lst in numerical abundance statewide, constituting $0.1 \%$ of the total number, and 17 th in weight, representing $0.8 \%$ of the total fish biomass for the 12 -month period.

Table 75. Numerical abundance of Ictalurus punctatus collected by bottor traw morthiy i: the Nortin tisto, South Eaisto, and Cocper Rivere ard quarterly in other Bouth Carclina coastal regions frow February, 1973 through January, 1974.


Total length, temperature, and salinity ranges. Oyster toadfish collected in the estuaries during the year had a total length range of 23-245mand occurred over a bottom salinity range of $2.0-34.2^{\circ} / 00$ and a bottom temperature range of 11.5 - 30.4 C (Table 8).

Length-frequency relationship. The length-frequency relationship for oyster toadfish from all stations is summarized in Table 76. With the exception of February, this species was present at some life stage throughout the year. Total lengths ranged from $58-347$ man in May, 23-172 mm in July, and 33-217 mm in October.

Distribution and relative abundance. In the North Edisto River, 19 oyster toadish, with a total weight of 0.3 kg , were caught during the year (Table 10). In this estuary, the species ranked 22 nd in numerical abundance, constituting $0.1 \%$ of the total number, and $24 t h$ in weight, representing $0.2 \%$ of the total fish biomass for the 12-month period. This fish was present in North Edisto catches in small numbers during 8 months of the year (Table 77).

In the South Edisto River, only two oyster toadfish, with a total weight of 0.1 kg , were caught during the year (Table 12), one in April and one in June (Table 77). In this estuary, the species ranked $28 t h$ in numerical abundance, constituting $<0.1 \%$ of the total number, and 33 rd in weight, representing < 0.1\% of the total fish biomass for the $12-$ month period.

In the Cooper River, 24 oyster toadfish, with a total weight of 3.1 kg , were caught during the year (Table 14). In this estuary, the species ranked l9th in numerical abundance, constituting $0.2 \%$ of the total number, and llth in weight, representing $2.3 \%$ of the total fish biomass for the 12 -month period. This fish was present in Cooper River

Table 76. Length-frequency reletionship for Opsanus tau collected by bottom trawl in Soutr Carolina estuaries (all stations combined) from February, 1973 through January, 1974.

Total   Length   Interval   (mm)	Month											
	$\frac{1973}{\text { Feb. }}$	Mar .	Apr .	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\text { Jan. }}$
23-27						5						
28-32						3						
$33-37$									1			
$38-42$									1			
$43-47$									1.			
48-52						1			1		1	
53-57		1	1			1						
58-62				1		1	1				2	
63-67												
68-72									1			
73-77						1			3			
78-82					1	1						
83-87			1			1			2			
88-92								1				
93-97				1		2						
98-102				1		3	1					
103-107				1.	1			1				
108-112			1	1		1						
113-117			1	1								
118-122				1.							1	
123-127						1			1			
128-132									1		1	
133-137			1	1						1		
138-142												
143-147												
148-152												
153-157											.	
158-162												
163-167												
168-172						1						
173-177								1				

Table 76. (Continued.)

Total Length Interval (mm)	Month											
	$\frac{1973}{\text { Feb. }}$	Mar.	Apr .	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\sqrt{\operatorname{san}}}$
188-192				1					2			
193-197												
198-202												
203-207				1					1			1
208-212										1		1
213-217				1					1			1
338-342			1									
$343-347$				1								
Mean Total												
Length (mm)		55	123	147	92	69	80	123	106	272	84	110




Month	Monthly Sempling（Intensive Phase）					Quarterly Eampling（Extensive Fhase）				
	North   Ediシさロ	Scuth   Fばらも0	Copper River	$\begin{aligned} & \text { Total } \\ & \text { Casor by } \\ & \text { Yontr. } \end{aligned}$	```percent of [0:3] Catch```	mortterer． Begion	Charleston Fer，ion	So＇rthera Region	$\begin{aligned} & \text { Total } \\ & \text { Catai ty } \\ & \text { oparter } \end{aligned}$	$\begin{gathered} \text { Perient } \\ \text { of rot.al } \\ \text { Cacet } \end{gathered}$
1973										
February				0	0.0					
March	1			1	2.2					
April	3	1	1	5	11.1		1		1	3.2
May	5		7	14	31.1					
June	1	1		2	it． 4					
July			4	4	3.9	3	13	2	18	58.0
August	2			2	1． 4					
September	3			3	6.7					
October			4	4	8.9	2	10		12	38.7
Novemter	1		1	2	4.4					
December	3		2	5	11.1					
1974										
January	－	－	3	$3-$	6.7	－	－	$\square$	0	0.0
Total Catch										
Percent of Potal Catch	42.2	1．． 1.	53.3		100.0	76.1	77.4	61.4		100.0
Grand Totel（All months and stations combined）$=76$										

bottom trawl catches in relatively low numbers during 7 months of the year (Table 77).

Distribution and relative abundance of oyster toadfish at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also sumarized in Table 77.

Larimus fasciatus (Banded Drum)

Total catch. During the year, 75 banded drum (Larimus fasciatus) with a total weight of 2.1 kg , were obtained at all stations combined (Table 7). This species ranked 2and in numerical abundance statewide, constituting $0.1 \%$ of the total number, and 26 th in weight, representing $0.4 \%$ of the total fish biomass for the 12 -month period.

Total length, temperature, and salinity ranges. Banded drum collected in the estuaries during the year had a total length range of 37-146 mm and occurred over a bottom salinity range of 12.9 $34.2^{\circ} / 00$ and a bottom temperature range of $16.0-30.5 \mathrm{C}$ (Table 8).

Length-frequency relationship. The length-frequency relationship for banded drum from all stations is summarized in Table 78. This species occurred in the estuaries from July to December. Total lengths ranged from 33-147 mm in July, 63-107 mm in September, and 48-147mm in November.

Distribution and relative abundance. In the North Edisto River, 50 banded drum, with a total weight of 0.4 kg , were caught during the year (Table 10). In this estuary, the species ranked 14 th in numerical sbundance, constituting $0.2 \%$ of the total number, and $22 n d$ in weight,

Table 78 . Length-frequency relationship for Larimus fasciatus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, 1973 through January, 2974.

```Total Length Interval (mm)```	Month											
	$\frac{\overline{1973}}{\text { Feb }}$	Mar .	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\frac{1974}{\mathrm{Jan} .}$
$33-37$						1						
38-42												
$43-47$									1.			
48-52									1	1		
53-57									2	2		
58-62											1	
63-67								1		1	9	
$68-72$							1				6	
$73-77$												
78-82								4	1		1	
83-87								5				
$88-92$								5				
93-97								9				
98-102								6	1			
103-107								1				
108-112												
113-117												
118-122												
123-127												
128-132						4						
133-137						4						
138-142						6						
143-147						1				1		
Mean Totel												
Length (min)						130	70	91	64	79	67	

representing 0.3% of the total fish biomass for the 12 -month period. This fish was only present in North Edisto bottom trawl catches during the second half of the year, from July - December (Table 79).

In the South Edisto Fiver, only six banded drum, with a total weight of 0.1 kg , were caught auring the year (Table 12). In this estuary, the species ranked 24 th in numerical abundance, constituting 0.1% of the total number, and 31 st in weight, representing 0.1% of the total fish biomass for the 12 -month period. This fish was present In South Edisto bottom trawl catches only in low numbers from September through December (Table 79).

In the Cooper River, banded drum were completely absent from all bottom trawl catches at all stations throughout the year (Table T9).

Distribution and relative abundance of banded drum at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also summarized in Table 79.

Menticirrhus americanus (Southern Kingfish)

Total catch. During the year, 75 southern kingfish (Menticirrhus americanus) with a total weight of 1.8 kg , were obtained at all stations. combined (Table 7). This species ranked 22 nd in numerical abundance statewide, constituting 0.1% of the total number, and 27 th in weight, representing 0.3\% of the total fish biomss for the l2-month period.

Total length, temperature, and galinity ranges. Southern kingfish collected in the estuaries during the year had a total length range of $43-271 \mathrm{~mm}$ and occurred over a bottom salinity range of $0.9-34.2^{\circ} / 00$ and a bottom temperature range of 9.2-30.1 c (Table 8).

Grani Total (All months and stations combined) $=75$

Length-frequency relationship. The length-frequency relationship for southern kingfish from all stations is sumarized in Table 80. This species was present in South Carolina esturies at some life stage throughout the year. Total lengths ranged from $108-197 \mathrm{~mm}$ in May, 43-167 mmin Juiy, and 63-167 mm in September.

Distribution and relative abundance. In the North Edisto River, 47 southern kingfish with a total weight of 1.2 kg , were caught during the year (Table 10). In this estuary, the species ranked 16 th in numerical abundance, constituting 0.2% of the total number, and 14 th in weight, representing 0.7% of the total fish biomess for the 12 -month period. This fish was present in small numbers throughout the year (except August) in North Edisto bottom trawl catches (Table 81).

In the South Edisto River, 17 southern kingfish, with a total weight of 0.2 kg , were caught during the year (Table 12). In this estuary, the species ranked 18 th in numerical abundance, constituting 0.2% of the total number, and 20th in weight, representing 0.2% of the total fish biomass for the 12 -month period. Small numbers of this fish were occasionally present in South Edisto bottom trawl catches during the year (Table 81).

In the Cooper River, only three southern kingfish, with a total weight of 0.1 kg , were caught during the year (Table 14), one in August and two in October (Table 81). In this estuary, the species ranked 27 th in numerical abundance, constituting $<0.1 \%$ of the total number, and 30 th in weight, representing 0.1% of the total fish biomass for the 12 -month period.

Distribution and relstive abundance of southern kingfish at additional stations trawled quarterly in the northern, Charleston, and southern regions of the state are also summarized in Table 81.

Table 80. Length-frequency relationship for Menticirrhus americanus collected by bottom trawl in South Carolina estuaries (all stations combined) from February, lin through Janaary, 1974.

Total Length Interval (mon)	$\frac{\overline{1973}}{\text { Feb. }}$	Month										
		Mar.	Apr.	May	June	July	Aug.	Sept.	Oet.	Nov.	Dec.	$\frac{1974}{\text { Jan. }}$
43-47						2						
48-52					1	1						
53-57												
58-62												
63-67								1		1		
$68-72$						2	1				1	
73-77								2		1		
78-82									1			
83-87						2		1				
$88-92$						1		1				
93-97						1		1				
98-102								2	1			1
103-107								2				1
108-112				1				1	1			
113-117									1			
118-122				2					1	1		
123-227				1				1.	1			
128-132				1				2				
133-137		1		1				2	1			
138-142								2	1	1		I
143-147									1			-
148-152			2					1	1			1
153-157	1				1							
158-162									1			
163-167						1		1				
168-172					1							1
173-177												1
178-182									2			
183-187					1					1		
188-192												
$193-197$ $268-272$				1					1			
268-272												1
Mean Total length (mm)	155	135	150	134	140	80	70	113	138	117	70	157

Tebie 81. Numericel abundance of Menticirrhus americamus collected by tottom trawl monthly ir. the North Fdisto, South Edisto, and Cooper Rivers snd quarteriy in other South Carolima coastai regions from February, 1973 through January, 1974.

Nonth	Monthly Sampling (Intensive Phase).					Quarterly Sampling (Extensive Phase)				
	North Edisto	Bouth Edisto	Cooper River	Total Catch by Month	Percent of Total Cateh	Northern Region	Charleston Fegion	Southern Region	Total Catch by quarter	Percent of Total Catch
1973										
February	1			1	1.5					
March	1			1	1.5					
April	1	1		2	2.9				0	0.0
May	7			7	10.4					
June	4			4	5.9					
July	7			7	10.4			2	2	25.0
Auguat			2	1	1.5					
September	7	13		20	29.8					
October	12		2	14	20.9	1			1	12.5
November	4	2		6	8.9					
December	1			1	1.5					
$\frac{1974}{\sqrt{\text { Bnuary }}}$	2	1		3	4.5			5	5	62.5
Total Catch by Region	47	17	3	67		1	0	7	8	
Percent of Total Catch	70.1	25.4	4.5		100.0	12.5	0.0	87.5		100.0
Grand Total	and sta	s combin	$=75$							

DISCUSSIO:

A total of 62,634 fish, representing 83 sfec:es from 46 families, was caught by bottom trawl in Eouth Carolina estuaries during the 12-month sampling feriod from F'erruary, 3973 tircug!. January, 1974. However, the vast majority of the total catch was comprised of but a few species. Stelijfer lanceolatus (star drum) was the most abundant and with Anchoa mitchilli (bay anchovy), the second most numerous species, accounted for over one-ralf of the total number of fish caught during the year. These two species, along with Nicropogon unculatus (Atlantic croaker) anc Leiostomus xanthurus (spot), in turn made up 80.5% of the total number caugnt. Only 18 species were each able to contribute $>0.1 \%$ of the total number of fish caught. The remaining 70 species least frequently encountered, when combired, accounted for only 2.0% of the total catch.

The six most nomerous species were all sciaerids, with the exceftion of one engraulid, Anchca ritchilli, which ranked second. Ranked in decreasing order of abundence, these sciaenids were: Stellifer lanceolatus $>$ Micropogon undulatus $>$ Leiostomus xanthurus $>$ Cynoscion regalis (weakfish) $>$ Eairdieila chrysura (silver perch), Dhe low number of Menticirrhus americanus collected (Wable 7) was somewhat surprising, considering the relatively greater numbers cf tnis speaies collected by earlier South Carolina investigators (Bearden, 1963).

Contributions to the total catch ir terms of weight were spread over a sligttly larger number of species, with nine species constituting 80.6% of the total catch by weight. Fourteer species each contributed $>1.0 \%$ of the total catch biomass.

Except for Ictalurus catus (white catfish), the six most abundant species by welght were once again sciaenids. Ranked in decreasing order of abundance, these sciaenids were: Stellifer lanceolatus $>$ Micropogon undulatus $>$ Leiostomus xanthurus $>$ Bairdiella chrysura $>$ Cynoscion regalis. Because it is small even as an adult, Anchoa mitchilli, though numerous, contributed only 3.5% of the total catch biomass.

Many of the most common species were present during much, or all, of the year, but displayed seasonal variations in abundance. For Stellifer lanceolatus, our lengthmfrequency data (Table 9) indicate that both young and adults were present in South Carolina estuaries during the sumer spawning season. For the remaining four common scisenids, changes in seasonal abundance were more dramatic and in ald cases were intluenced by migrations to offshore waters for spawning. Two of these sciaenids were fall-winter spawners and two were spring-summer spawners. Thus, Micropogon undulatus (a fall-winter spawner) was present primarily from April to October, followed by offshore migration from November to March, with earliest recruitment of young-of-the-year into bottom trawl catches occurring in January at a total length of about 20 mm . Leiostomus xanthurus was most abundant in the estuaries from April to August, with movement offshore beginning in September for winter spawning, followed by return of new recruits probably in February and March. These young-of-the-year spot first became vilnerable to our bottom trawls upon assuming a benthic mode in April at total lengths of 18 - 42 mm . After springsummer spawning, Cynoscion regalis was most abundant during midsummer to fall, with migration offshore beginning in late fall, followed by return to the coastal nursery grounds in spring. Recruitment of progeny, as reflected in bottom trawl catches, followed in June at total lengths of 23 - 52 mm . Bairdiella chrysura, a late spring-early sumer spawner,
was most abundant from late summer to January witk first recruitment into trawl catches during July at total lengths of $33-87 \mathrm{~mm}$.

Seasonal distribution patterns varied considerably among the remaining three most comon species. Anchon mitchilli was preser.t throughout the year, with recruitmert of young-of-the-year into bot tum trawls beginning in July at a total length of about 20 mm . Ictalurus catus was the most residential of the frequently-occurring specjes ani was present throughout the year, with recruitment into trawl catches in July at total lengths of $28-67 \mathrm{~mm}$. Wrophycis reeius (spotted hake) exhinited one of the most dramatic seasonal patterns, beirg present in reasonable numbers from February to May but alruptly disappearing. before June and presumaly remaining in deeper waters outside Douth Carolina estuaries through December. Recruitment of yourg-of-the-year for this gadid was first observed in January at a total length of about 65 mm . Times of recruitment and total lengths at which these new recruits first appeared were based throughout this report on vinerability to capture by the $2.5-\mathrm{cm}$ (1-inch) stretch mesh bottom trawls. Therefore, for most species utilizing South Carolina estuarjer as nursery grounds, planktonic larval and postlarval stages were proratiy present from several weeks to as nuch as two months prior to aprearance of the new recruits in the trawl catcnes.

Of the three rivers sampled intensively, the fiorth Edisto syetem exhibited the greatest diversity, with ϵ_{2} species caught during the year, The benthic fish community in the North Edisto was dominated numerically by Stellifer lanceolatus, followed by an Anchoa mitctilli - Leiostomus xanthurus - Micropogon undulatus assemblage. The gadid Urophycis regius, the sciaenids Cynoscion regalis and Bairdiella chrysura, and the
cynoglossid Symphurus plagiusa (blackcheek tonguefish) aiso occurred frequentiy.

The benthic fish community in the South Edisto River was represented by 47 species. Bottom waters again were dominated numerically by Stellifer lanceolatus, followed by a Micropogon undulatus - Ictalurus catus - Anchoa mitchilli assemblage. Chloroscombrus chrysurus (Atlantic bumper), Urophycis regius, Cynoscion regalis, Leiostomus xanthurus, Trinectes maculatus (hogchoker), Symphurus plagiusa, and Bairdielia chrysura also occurred often.

The benthic fish community in the Cooper River was represented by 57 species. In terms of numerical abundance, bottom waters were dominated almost equally by Stellifer lanceolatus and Micropogon undulatus, followed by an Anchoa mitchilli - Brevoortia tyrannus (Atiantic menhaden) Urophycis regius assemblage (replacing the supporting sciaenid assemblage found in the North Edisto River). Cynoscion regalis and Leiostomus xanthurus, along with Alosa aestivalis (blueback herring), Ictalurus catus. Dorosoma petenense (threadfin shad), and Bairdiella chrysura, also were common.

Stations were selected to indicate present conditions of benthic ichthyofauna in the major estuaries of South Carolina. These estuaries generally fall into one of two groups: those with source waters originating well above the fall-line and those represented by coastal plain rivers. The former rivers, such as the South Edisto and Cooper, are subject to spring freshets and floods and carry heavy sediment loads. The latter, such as the North Edisto River, as a rule do not experience large variations in freshwater discharge and do not contain large quantities of suspended sed1ments.

The North Edisto was selected for intensive trawling because this river is an excellent example of a high-salinity estuary, characteristically mixo-polyhaline (Venice System, 1958). Aithough this water course has no major freshwater inflow, a large area of intermediate salinities is present. This estuary is relatively pristine and contains large shrimp nursery grounds and many oyster leases. The river has minor connections with the South Edisto. Stations were selected to represent areas in both the main trunk of the river and its tributaries.

The South Edisto was selected for intensive trawling because this river is adjacent to the North Edisto but, unlike the North Edisto, it has a large drainage basin responsible for considerable freshwater inflow. As a result the South Edisto, in contrast to the North Edisto, provides for study an excellent example of a low-salinity estuary, with the upper half characteristically mixo-oligohaline and the seaward half mixomesohaline (Venice System, 1958). Stations were selected to represent the entire salinity gradient from the river mouth upriver to locations well above the permanent freshwater line. The South Edisto is a prime nursery ground for blue crabs, shrimp, and coastal migrant fishes (principally sciaenids and clupeids) and, like the North Edisto, remains relatively pristine.

Because both branches of the Edisto have been less affected by man's activities than many of the other major estuaries in South Carolina, data gathered during this study will provide added insight into conditions of estuarine fish populations in unpolluted coastal ecosystems and will establish base line data prior to further possible utilization of these estuaries by industries and municipalities.

The Cooper River was also selected for intensive trawling for a number of reasons. This study should provide useful base line data
for the Cooper River eatuary which is experiencing continuously increasing pressure from extensive port and industrial development. These Cooper River data are aiso timely since the U. S. Army Corps of Engineers has proposed a plan to redivert freshwater supplied by the Santee-Cooper impoundment from the Cooper River to the Santee River to alleviate heavy silting in Charleston Herbor. This river system bisects the South Carolina coastal zone and, therefore, geographically provides a reference river for use in contrasting data from various other estuaries across the atate. This mixohaline (Venice System, 1958) ecosystem provides study areas represented by (1) marine species in open water at the mouth of Charleston Harbor, (2) an estuarine community in the extensive and often fluctuating zone of intermediate salinities, and finally (3) upriver an aquatic zone above the permanent freshwater line, typified by an ictalurid clupeid - anguillid assemblage over live bottom with submergent aquatic plants dominated by Anacharis canadensis and Ceratophyllum demersum.

Trawling during this initial study was restricted to flood stage during daylight hours in order to minimize the number of extraneous variables influencing the catch data. Additional bottom trawl studies are currently being conducted during all tide stages, day and night, at some of the same stations occupied during this investigation. These 25-hour studias are designed to provide information concerning tidal and day-night effects on bottom trawl catches in South Carolina estuaries.

The significance of sampling location siting in terms of its influence on observed versus actual species composition, relative abundance, geographic distribution, and length-frequency relationships should be considered. In field investigations such as this one, such abservations are, to some extent, influenced by the locations selected for monitoring. Thus, the species found and their relative abundances
are affected by the distribution of stations which vary in selinity, water depth, bottom type and other physical, chemical, and even biological parameters. For this reason, great effort was made to select stations that would reflect the wide array of environmental conditions found in South Carolina estuaries. In those estuaries having freshwater lines, attempt was made to locate stations at the estuary mouths, at intermediate salinities, and below and above freshwater lines. Stations were located over all water depths and botton types characteristically found in South Carolina's rivers, bays, and sounds. Two completely freshwater stations (i.e. $<0.5 \% / 00$ salinity year round) were included, one on the South Edisto (Snuggedy Swamp) and one on the Cooper River transect ("The Tee").

As with station siting, the significance of gear selectivity in terms of its effect on observed versus ectual species composition should also be considered. Data in this report were limited to findings from bottom trawling. As a result, these data have emphasis placed on benthic fishes, particularly the sciaenids, and not on pelagic species, most notably the clupeids and engraulids, During the South Carolina Estuarine Survey Program, midwater trawl tows were also conducted during all seasons at North and South Edisto and Cooper River stations. If midwater catch data had been included in this report, its influence would have been appreciable on that portion of the results in which species were ranked in decreasing order of abundance statewide and individually in the North Edisto, South Edisto, and Cooper Rivers. For example, Stellifer lanceolatus was ranked statewide as the most abundant estuarine fish species based on these bottom trawl data, followed by

Anchoa mitchilli. However, in midwater trawls at these same stations, Anchoa mitchilli dominated heavily while Stelifiex larceolatus, characteristically a bottom-dweller (Hildebrand and Cable, 1934) was noticeably absent. If rankings were based on composite bottom and midwater catch data, Anchoa mitchilli would displace Stellifer lanceolatus as the most common estuarine fish species collected during the year.

For the same reason several other pelagic species common to South Carolina have been treated superficially in this presentation. However, more detailed discussions are available elsewhere, particularly for the state's anadromous fish stocks composed primarily of Alosa aestivelis (blueback herring), Alosa sapidissima (American shad), Alosa mediocris (hickory shad), and Morone saxatilis (striped bass) (Curtis, 1971; 1972).

In addition, some fish species known to frequent South Carolina estuaries were either caught infrequently or did not appear at all during this study. No seining was conducted along beaches or shallow littoral zones of rivers, and no collections were made in small creeks. Thus many groups, such as cyprinids, etherinids, mugilids, blenniids, and gobiids, are reported in disproportionately low numbers. Some information is available elsewhere on species comm to South Carolina beaches and areas immediately adjacent to marshes (Cupka, 1972) and on species frequenting some small creeks (Turner and Johnson, 1974).

Since this investigation is a result of an estuarine research program, no trawl sampling was conducted offshore. Had such sampling been included, the overall species composition described in this report could have been altered appreciably. Some information on species common to South Carolina offshore areas is available elsewhere (Struhsaker, 1969; Bearden and McKenzie, 2971). Also a number of the relatively
common game species such as Pogonias cromis (black drum), Cynoscion nebulosus (spotted seatrout), Sciaenops ocellatus (red drum), Pomatomus saltatrix (bluefish), Elops saurus (ladyfiish), and Archosargus probatocephalus (sheepshead), which frequent South Carolina estuaries, were not taken in large numbers because of their habitat preferences as well as their mobility as adults.

The reader should keep several additional points in mind when reviewing these data. While the majority of the South Carolina coastal zone was covered in this study, no sampling was conducted north of Winyah Bay. Some data on fish species inhabiting this northermost portion of the state are available elsewhere (Cupka, 2972). The length-frequency tables were based on statewide cruises (i.e. data from 33 stations) during April, July, and October, 1973 and January, 1974 and on monthly cruises (i.e. data from 17 stations) encompessing the North and South Edisto and Cooper Rivers during remaining months. Therefore, conclusions concerning changes in relative abundances from month to month should not be drawn directly from the length-frequency tables. For this type information, the reader should consult instead the tables presenting numbers for each fist species occurring monthly and quarterly at stations in each estuary. Also, these results are limited to a single annual cycle, during which meteorological conditions at times fluctuated atypically. Just prior to the start of cruises in February, 1973, South Carolina coastal counties recorded the heaviest snowfalls the eastern portion of the state had experienced for the past several decades. Consequent freshwater runoff during spring, 1973, along with heavy rains in early sunmer (June), undoubtedly influenced estuarine hydrography and in turn, distribution and movements of fish populations during the first
six months of this study. Also, during the final quarter (Winter, 1973 1974) unusually mild temperatures prevailed. Thus, the results may not reflect in every case the anticipated length-frequency, relative abundance, and distribution patterns generally exhibited by fish populations common to South Carolina estuaries. For this reason, these studies are being continued over a number of additional annual cycles. The initial data are presented at this time to provide a base to which future information can be added.

The bottom salinity range over which each species was found (Table 8) provides an approximate expression of the steno- or euryhaline nature of that species in South Carolina estuaries. However, single "strays" transported to atypical habitats can greatly extend the salinity ranges reported (Table 8), and these exceptions do not necessarily reflect the salinity range preferred by the majority of that population. On the other hand, the ranges as reported do offer minimum estimates of salinity extremes that can be physiologically tolerated, at least for short periods, by many of the fish species utilizing South Carolina estuarine habitat during all or portions of their life cycles.

With few exceptions, the 23 most common species were all able to at least enter the North and South Edisto and Cooper River estuaries. However, some species were limited to the river months (strictly marine forms) or to stations considerably upriver (strictly freshwater species). Interesting exceptions were Dorosoma petenense (threadfin shad) and Peprilus alepidotus (harvestfish), neither of which occurred in any South Edisto catches, and Larimus fasciatus (banded drum), which was never caught at any Cooper River station, including the mouth of Charleston Harbor.

However, the differences in salinity regimes Letweer tie Morth. Edisto (high salinity oniy), the South Edisto, end Cooper ivers apperently influenced considerat \perp y the extent to which vaincus benthic insh speis: were able to penetrate each of these estuaries. For example, Anctica mitchilii and Cynosoion regalis were both widely distributed at all stations in the North Edisto (Tables 18 and 33), but in the Soutr Edisto and Cooper Rivers their numbers decreased with increasing distance inland (Tables 19, 20, 34, and 35). Two other commor species, Stellifer lanceolatus and Eeiostomus xanthurus, also frequented the entire Horth Edisto estuary (Tables il and 28) but were unable to penetrate the freshnater lines on either the Sont h Edisto or Corper Rivers (lables $13,15,29$, and 30).

Urokincis regius was the most stercingline of the frequentlyercountered marine species ard occurred only in hish salinities. This species was wicely distributed in the North Fdisto (fable 48) but was unable to penetrate Sluther inland than the momths of the South. Edisto and Cooper Fivers (Tables 49 and 50). Ictalurus catias occupied the opposite salinity extreme. This catfish was absent from the Mortr. Edisto, with the exception of a single individual aught at one station lipriver (Table 43). In the South Edisto and Cooper Rivers, however, the species was able to occupy stations from freshwater seaward to within a few miles of the estuary mouths (Tables 44 and 45).

The relatively small, fine-mesk bottor trail: were geared gererally toward capture of smal fish. As a result, for spesies having life cycles of three or more years, the portions of porulation structures represented by older, and subsequently larger, ith orten are not evider: on most of the length-frequency tables presented (e.E. Cynoscior regalis).

Absence of older fish from the trawl catches could not aiways be attributed to migrations from the estuaries. The absence of large adult fish in the catches during some portions of the year (e.g. Leiostomus xanthurys) was probably due, at least in part, to avoidance of, or escapement from, the small $6-\mathrm{m}(20-\mathrm{ft})$ trawl. Alsc, body sizes for adults of some species, especially Anchoa mitchilli, were critically close to the mesh size utilized and, at times, escapement through the mesh was observed during haul back of the trawl as the catch approached the surface.

Length-frequency, relative abundance, and seasonal distribution patterns obtained for most species generally compare fevorably with results obtained in earlier estuarine studies in the Carolinas and Georgia (Welsh and Breder, 1923; Hildebrand and Cable, 1930; 1934; 1938; Carlander, 1969; Miller and Jorgenson, 1969; Struhsaker, 1969; Dahlberg and Odum, 1970; Dahiberg, 1971; Hoese, 1973). Data which varied appreciably from earlier findings were so noted in the treatment of results for each species.

SUMMARY

In February, 1973 the South Carolina Wildife and Marine Resources Department initiated a major statewide estuarine research program. This "Environmental Base Line Study of South Carolina Estuaries" has as broad objectives the determination of basic biological, chemical, and physical characteristics of the major estuaries of South Carolina, the seasonal changes in these characteristics and their interactions over a several-year period.

This report presents data on relative abundance, seasonal distribution, and length-frequency relationships for 88 fish species captured by bottom trawl in South Carolina estuaries during the 12-month period from February, 1973 through January, 1974.

Thirty-three stations were occupied statewide on a quarterly basis. Seventeen of these stations also were occupied monthly in the North and South Edisto and Cooper Rivers. All trawling was accomplished with the R/V ANITA, a $16-m$ ($52-\mathrm{ft}$) shallow-draft vessel rigged as a stern trawler. Twenty-minute tows were made against flood tide during daylight with 6-m (20-ft) semiballoon otter trawls, 2.5-cm (l-inch) stretch mesh.

Tables summarizing the entire year's catch statewide are presented, including all species, their rankings in order of abundance by total numbers and weights, and the percent of the total number and weight contributed to the year's catch by each species. Similar tables are presented for the North Edisto, South Edisto, and Cooper Rivers individually and species rankings between these three estuaries sampled intensively are compared.

Total length ranges, bottom temperature and salinity ranges, and primary locations at which each species occurred are also reported.

For the eight most common fishes, numbers caught throughout the year are individually reported by species, presenting catch per month at each station in each estuary or coastal region of the state.

For an additional 15 fishes collected in moderate abundance, numbers caught throughout the year are individually reported by species, presenting catch per month with data for all stations combined within each estuary or coastal region of the state.

Length-frequency relationships are also described for the 23 fish species most commonly captured by bottom trawl. For each of these species a single table is presented combining length-frequency data for all stations across the South Carolina coastal zone.

Available literature on length-frequency relationships and seasonal abundance and distribution for the benthic fish species most commonly encountered in South Carolina estuaries is reviewed briefly.

A total of 62,684 fish, representing 88 species from 46 families, was caught by bottom trawl in South Carolina estuaries during the 12-month sampling period. However, the vast majority of the total catch was comprised of but a few species. Stellifer lanceolatus was most abundant and, with Anchoa mitchilli (the second most numerous species), accounted for over one-half of the total number of fish caught during the year. These two species, along with Micropogon undulatus and Leiostomus xanthurus, in turn made up 80.5% of the total number caught. Only 18 species were each able to contribute $>0.1 \%$ of the total number of fish caught. The remaining 70 species least frequently encountered, when combined, accounted for only 2.0% of the total number.

The six most numerous species were all sciaenids, with the exception of one engraulid, Anchoa mitchilli, which ranked second. Ranked
in decreasing order of abundance, thesc stiaerije viere: Stellifer lanceolatus $>$ Micropogon unduiatus $>$ Leiostomui yarturus $>$ Cynoscion regalis $>$ Bairdiella chrysurg.

Contributions tc the total catck in terms oi weiglit were spreac over a slightly larger number of species, witt nine species constituting 80.6% of the totel catch by weight. Fourteen ipecies each contributed > 1.0% of the total catch biomass.

Except for Ictalurus catus, the six most abundant species by weight were once again sciaenids. Fanked in decreasing order of abundance, these sciaenids were: Stelpifcr lanceolatus $>$ l:Ecropogon undulatus $>$ Leiostoms xanthurus $=$ Bairdielia chrysura $>$ Eyncsoion regalis. Because it is small even as an adult, inchoa mitchilif, though numerous, contributed only 3.5% of the total catch biomass.

Of the three rivers samplea intensively, the Horth Edisto system exribited the greatest diversity, with $6 \hat{c}$ species collected by bottom trawl during the year. The bentric fish community in the North Edisto was dominated by Stellifer lanceolatus, followed by an Anchoa mitchigli Leiostomus xanthurus - ?icropogor undulatus assemblage. The gadid Urophycis regius, the sciaenids Gynoscion regalis and Bairdiella chrysura, and the cynoglossid Symphurus plagiusa also cocurred frcquently.

The benthic fish commuity in the south Edisto River was represented by 47 species. Bottom waters were again dominated by Stellifer lanceolatus, followed by a Micropogon undulatus - Ictalurus cutusi - Anchoa mitchilli assemblage. Chloroscombrus chrysurus, Urophycis regius, Cynoscion regalis. Leiostomus xanthurus, mrinectes maculatus, Sympharus plagiusa, and Bairdiella chrysura also occurred often.

The benthic fish community in the Cooper River was represented by 57 species. Bottom waters were dominated almost equally by Stellifer lanceolatus and Micropozon undulatus, followed by an Anchoa mitchilli Brevoortia tyrannus - Urophycis regius assemblage (replacing the supporting sciaenid assemblage found in the North Edisto River). Cynoscion regalis and Leiostomus xanthurus, along with Alosa aestivalis, Ictalurus catus, Dorosome petenense, and Bairdiella chrysura also were commor.

LIMERATUFE CITED

Anderson, w. W. 1968. Fishes taken during shrimp trawling along the south Atlantic coast of the United States, 1931-1935. U. S. Dep. Interior, Fish and wildl. Serv. Spec. Sci. Rep. Fish. No. 570. 60 p.

Bailey, R. M., Chairman. 1970. A list of common and scientific names of fishes from the United States and Canada. 3rd ed. Amer. Fish. Soc. Spec. Pub. No. 6, Washington, D. C. 150 p.

Barans, C. A. 1969. Distribution, growth and behavior of the spotted hake in the Chesapeake Bight. Masters Tresis. College of William and Mary. 53 g .

Barans, C. A. 1972. Spotted hake, Urophycis regius, of the York River and lower Chesapeake Bay. Ches. Sci. $13(1): 59-62$.

Bearden, C. M. 1963. A contribution to the biology of the king whitings, genus Menticirrhus, of South Carolina, Contrib. Bears Bluff Lab. NO. 38.27 p.

Bearden, C. M. 1964. Distribution and abundance of AtIantic croaker, Micropogon undulatus, in South Carolina. Contrib. Bears Bluff Lab. No. 40.23 p .

Bearden, C. M., and M. D. McKenzie. 1971. An investigation of the offshore demersal fish resources of South Carolina. S. C. Wildl. Res. Dep. Tech. Rep. No. 2. 19 p.

Bigelow, H. B., and W. C. Schroeder. 1953. Fishes of the Gulf of Maine. Fish. Bull. Nc. 74. 577 p .

Böhlke, J. E., and C. C. G. Chaplin. 1968. Fishes of the Bahamas and adjacent tropical waters. Livingston Publ. Co., Wynnewood, Pa. 771 p .

Carlander, K. D. 1969. Handbook of freshwater fishery biology, volume one. 3 rd ed. Iowa State Univ, Press, Ames, Iowa. 752 p.

Christmas, J. Y., and R. S. Waller. 1973. Estuarine vertebrates, Mississippi, p. 320-434. In: Cooperative Gulf of Mexico estuarine inventory and study, Mississippi. Gulf Coast Kes. Lab.

Cupka, D. M. 1972. A survey of the ichthyofauna of the surf zone in South Carolina. S. C. Wildl. Mar. Res. Dep. Tech. Rep. No. 4. 19 p.

Curtis, T. A. 1971. Anadromous fish survey of the Santee and Cooper Rivers. S. C. Wildl. Mar. Res. Dep. Job Prog. Rep., Proj. AFS-3-1. 57 p.

Curtis, T. A. 1972. Anedromous fish survey of the Santee and Cooper Rivers. S. C. Wildl. Mar. Res. Dep. Job Prog. Rep., Prod. AFS-3-2. 40 p .

Dahlberg, M. D., and E. P. Odum. 1970. Annual cycles of species occurrence abundance, and diversity in Georgia estuerine fish populations. Amer. Midl. Natur. 83(2): 382-392.

Dahlberg, M. D. 1971. Hebitats and diversity of the fishes in North and South Newport Rivers and adjacent waters, p. 36-121. In: Ar ecological survey of the North and South Newport Rivers and adjacent waters with repect to possible effect of treated Kraft Mill effluent. Ga. Water Control Bd. UGA \#D2422-122. 280 p .

Daiber, F. C. 1957. The ses trout. Est. Bull. 2(5): 2-6.
Dawson, C. E. 1958. A study of the biciogy and life tistory of the spot, Leiostomus xanthurus, Lacepede, with specieal reference to South Carolina. Contrib. Bears Bluff Lab. No. 28.48 p .

Fowner, H. W. 1945. A study of the fishes of the southerm piedmont and coastal plains. Acad. Natur. Sci. Philadelphia Monogr. No. $7: 1-418$.

Ginsburg, I. 1951. Western Atlantic tonguefishes with descriptions of six new species. Zoologica 36(14): 185-201.

Guest, W. C., and G. Gunter. 1958. The sea trout or weakfishes (Genus Cynoscion) of the Gulf of Mexico. Gulf State Nar, Fish. Comm. Tech. Sum. No. 1. 40 p .

Gunter, G. 1938. Seasonal variations in abundance of certain estuarine and marine fishes in Louisiana, with particular reference to life histories. Ecol. Monogr. 8(3): 313-346.

Gunter, G. 1941. Relative number of shallow water fishes of the northern Gulf of Mexico, with some records of rare fishes from the Texas const. Amer. Midl. Natur. 26(1): 194-200.

Gunter, G. 1956. A revisec list of euryhaline fishes of North and Middle America. Amer. Midl. Natur. 56(2): 345-354.

Gurter, G., and G. E. Hall. 1963. Biological investigations of the St. Lucie estuary (Florida) in connection with Lake Okeechobee discharges through the St. Lucie Canal. Gulf Res. Rep. 1(5): 189-307.

Hansen, D. J. 1969. Food, growth, migration, reproduction, and abundance of pinfish, Lagodon rhomboides, and Atlantic croaker. Micropogon undulatus, near Pensacola, Florida, 1963-65. Fish. Bull. 68(1): 135-146.

Hildebrand, S. F. 1963. Family Engraulidae, p. 152-249. In: Yngve H. Olsen [ed.] Fishes of the Western North Atlantic, Part 3. Sears Found. Mar. Res., Yale University.

Hildenbrand, S. F., and L. E. Cable. 1930. Development and life history of fourteen teleostean fishes at Beaufort, N. C. Bull. U. S. Bur. Fish. 46: 383-488.

Hildebrand, S. F., and L. E, Cable. 1934. Reproduction and development of whitings or kingfishes, drums, spot, croaker, and weakfishes or sea trouts, family Sciaenidae, of the Atlantic Coast of the United States. Bull. U. S. Bur. Fish. 48(16): 41-117.

Hildebrand, S. F., and L. E. Cable. 1938. Further notes on the development and life history of some teleosts at Beaufort, N. C. Buld. U. S. Bur. Fish. 24: 505-642.

Hildebrand, S. F., and W. C. Schroeder, 1928. Fishes of Chesapeake Bay. U. S. Bur. Fish. Bull. 53. 388 p.

Hoese, H. D. 1973. A trawl study of nearshore fishes and invertebrates of the Georgia coast. Contrib. Mar. Sci. 17: $\epsilon_{3}-98$.

Holbrook, J. E. 1860. Ichthyology of South Carolina. 2nd ed. Russell and Jones. Charleston, S. C. 205 p.

Hubbs, C. L., and K. F. Lagler. 1949. Fishes of the Great Lakes region. 2nd ed. Cranbrook Inst. Sci. Bull. No. 26. 186 p.

Joseph, E. B., and R. W. Yerger. 1956. The fishes of Alligator Harbor, Florida, with notes on their natural history. Fla. State Univ. Studies 22: 1ll-156.

Joseph, E. B. 1972. The status of the sciaenid stocks of the middle Atlantic Coast. Ches. Sci. 13(2): 87-100.

Kendall, A. W., Jr., and F. J. Schwartz. 1968. Lethal temperature and salinity tolerance of white catfish, Ictalurus catus, from the Patuxent River, Maryland. Ches. Sci. 9(2): 103-108.

Kuntz, A. 1914. The embryology and larval development of Bairdiella chrysura and Anchovia mitchilli. Bull. U. S. Bur. Fish. 33: 3-19.

Lagler, K. F. 1968. Capture, sampling and examination of fishes, p. T-45. In: W. E. Ricker [ed.] Methods for assessment of fish production in fresh waters. IBP Handbook No. 3. Blackwell Scientific Publications, Oxford.

Lunz, G. R., and F. J. Schwartz. [1970]. Analysis of eighteen year trawl captures of seatrout (Cynoscion sp: Sciaenidae) from South Carolina. Contrib. Bears Bluff Lab. No. 53. 29 p.

Mansueti, A. J., and J. D. Hardy, Jr. 1967. Development of fishes of the Chesapeake Bay region - an atlas of egg, larval, and Juvenile stages, Part l. Natural Resources Inst., Univ. of Maryland. 202 p.

Massman, W. H., J. P. Whitcomb, and A. L. Pacheco. 1958. Distribution and abundance of gray weakfish in the York River System, Virginia. Trans. 23rd North Amer. Wildl. Conf., 361-369.

Menzel, R. W. 1945. The catfish fishery of Virginia. Trans. Amer. Fish. Soc. 73: 364-372.

Miller, G. L., and S. C. Jorgenson. 1969. Seasonal abundance and length frequency distribution of some marine fishes in coastal Georgia. U. S.Fish and Wildi. Serv. Data Rep. 35. 102 p.

Nesbit, R. A. 1954. Weakfish migration in relation to its conservation. U. S. Dep. Interior Spec. Sci. Rep. Fish. No. 115.81 p.

Pearson, J. C. 1941. The young of some marine fishes taken in lower Chesapake Bay, Virginia, with special reference to the gray sea trout Cynoscion regalis (Bloch). U. S. Fish Wildl. Fish. Bull. 36: 79-102.

Perret, W. S., W. R. Latapie, J. F. Pollard, W. R. Mock, G. B. Adkins, W. J. Gaidry, and C. J. White, 1971. Section I, Fishes and invertebrates collected in trawl and seine samples in Louisiana estuaries, p. 41-105. In: Cooperative Gulf of Mexico estuarine inventory and study, Louisiana - Phase I, area description and Phase IV, biology. Louisiana Wildl. Fish. Comm. 175 p.

Perret, W. S., and C. W. Caillouet, Jr. 1974. Abundance and size of fishes taken by trawling in Vermilion Bay, Louisiana. Bull. Mar. Sci. 24(1): 52-75.

Schwartz, F. J., and R. Jachowski. 1965. The age, growth, and lengthweight relationship of the Patuxent River, Maryland ictalurid white catfish, Ictalurus catus. Ches. Sci. 6(4): 226-229.

Sikora, W. B., R. W. Heard, and M. D. Dahlberg. 1972. The occurrence and food habits of two species of hake, Urophycis regius and U. floridanus in Georgia estuaries. Trans. Amer. Fish. Soc. 101(3): 513-525.

Smith, H. M. 1907. Fishes of North Carolina. North Carolina Geol, and Econ. Survey, Vol. IT, 453 p.

Springer, S., and H. R. Bullis, Jr. 1956. Collections by the Oregon in the Gulf of Mexico. Dep. Interior Spec. Sci. Rep. Fish. No. 196. 134 p.

Springer, V. G., and K. D. Woodburn. 1960. An ecological study of the fishes of the Tampa Bay area. Fla. St. Bd, Conserv. Prof. Pap. Ser. No. l. 104 p.

Stevens, R. E. 1959. The white and channel catfishes of the Santee-Cooper reservoir and tailrace sanctuary. 13th Annual Conf. S.E. Game Fish Corm. 203-219.

Struhsaker, P. 1969. Demersal fish resources: composition, distribution, and commercial potential of the continental shelf stocks off southeastern linited States. Fishery Ind. Res. 4(7): 261-300.

Suttkus, R. D. 1954. Seasonal movements and growth of the Atlantic croaker (Micropogon undulatus) along the east Louisiana coast. Proc. Gulf Carib. Fish. Inst. 1954: 151-158.

Swingle, F. A. 1971. Biology of Alabama estuarine areas - cooperative Guif of Mexico estuarine inventory. Ala. Nar. Res. Bull. 5. 123 p.

Topp, R. W., and F. H. Hoff, Jr. 1972. Flatfishes (Pleuronectiformes). Memoirs of the Hourglass cruises. $4(2): 1-135$.

Turner, W. R., and G. N. Johnson. 1974. Standing crops of aquatic organisms in tidal streams of the lower Cooper River system, South Carolina, p. 13-20. In: Cooper River Environmental Study. S. C. Water Res. Conm. Environmental Studies Rep. No. 117.

Venice System, 1958. Symposium on the classification of brackish waters. Oikos 9: 311-312.

Welsh, W, W., and C. M. Breder, Jr. 1923. Contributions to life ristories of Sciaenidae of the eastern United States coast. Bull. U. S. Bur. Fish. 39: 141-201.

[^0]: * Surface reading.

[^1]: Wentative identification.

