THE INCIDENTAL CATCH FROM COMMERCIAL SHRIMP TRANLERS OF THE SOUTH ATLANTIC STATES

A Co-operative State-Federal Study

by Richard K. Keiser, Jr.

Marine Resources Research Institute South Carolina Wildlife and Marine Resources Department Charleston, South Carolina 29412

Technical Report Number 26

October 1977

[^0]
TABLE OF CONTENTS

Page
LIST OF FIGURES iii
LIST OF TABLES iv
ABSTRACT 1
INTRODUCTION 1
LITERATURE SURVEY 1
METHODS 1
NORTH CAROLINA 2
Shrimp Fishery 2
Literature Review. 2
Ratio Estimates 2
Species Composition of Traw1 Samples 2
By-catch Utilization. 2
SOUTH CAROLINA 8
Shrimp Fishery 8
Literature Review. 8
Ratio Estimates 8
Fish Catch Rates 8
Species Composition of Trawl Samples 8
Fish Landings by South Carolina Trawlers 8
By-catch Utilization. 8
GEORGIA. 8
Shrimp Fishery 8
Literature Review. 17
Ratio Estimates 17
Fish Catch Rates 17
Page
Species Composition of Trawl Samples 17
Fish Landings by Georgia Trawlers 17
By-catch Utilization 25
FLORIDA 25
Shrimp Fishery 25
Literature Review 25
Ratio Estimates 25
Fish Catch Rates 25
Species Composition of Trawl Samples 25
Fish Landings by Florida Trawlers 25
DISCUSSION 25
ACKNOWLEDGEMENTS 32
LITERATURE CITED 36

LIST OF FIGURES

Figure Page

1. Monthly variation in fish:heads-on shrimp ratios derived from commercial shrimp trawler catches. 182. Distribution of fish:heads-on shrimp ratios (by weight) calculatedfrom commercial shrimp trawler catches August to December 1969 andJuly 1970 to January 1971 (10 highest ratios excluded).20
2. Plot of $\log _{10}$ transformed fish:heads-on shrimp ratios (by weight) from commercial shrimp trawler catches from August to December 1969 and July 1970 to January 1971 21

LIST OF TABLES

Table Page

1. Shrimp (heads-on) and fish landed by shrimp trawlers in North Carolina between 1971 and 1975 3
2. Median fish/heads-on shrimp ratio and confidence intervals (25th and 75 th percentiles) determined from North Carolina data 4
3. Species composition and percent by weight in shrimp catches in North Carolina 5
4. Species of fish landed by shrimp trawlers in North Carolina, 1973-1975. 6
5. Comparison of estimated fish catches by shrimp trawlers in North Carolina with reported landings 7
6. Pounds of fish landed monthly by shrimp trawlers in North Carolina, 1973-1975 9
7. Shrimp (heads-on) and fish landed by shrimp trawlers in South Carolina between 1971 and 1975 10
8. Species composition of South Carolina shrimp trawl samples May to December 1974 and May to mid-August 1975 11
9. Pounds of fish landed monthly by shrimp trawlers in South Carolina, 1973-1975 12
10. Species of fish landed by shrimp trawlers in South Carolina, 1973-1975. 13
11. Comparison of estimated fish catches by shrimp trawlers in South Carolina with reported landings. 14
12. Comparison of estimated catches and reported landings for selected species caught by South Carolina shrimp trawlers between 1973 and 1975 15
13. Shrimp (heads-on) and fish landed by shrimp trawlers in Georgia between 1971 and 1975. 16
14. Average monthly fish/heads-on shrimp ratio estimates in Georgia and associated 95% confidence intervals ($t .05$ standard deviations) calculated from $\log _{10}$ transformed data; ratios greater than 20:1 excluded from computations. 19
15. Comparison of the 10 most abundant species in trawls sampled in Georgia 22
16. Pounds of fish landed monthly by shrimp trawlers in Georgia, 1973-1975 23
17. Species of fish landed by shrimp trawlers in Georgia, 1973-1975 24
18. Comparison of estimated fish catches by shrimp trawlers in Georgia with reported landings. 26
Table Page
19. Comparison of estimated catches and reported landings for selected species caught by Georgia shrimp trawlers between 1973 and 1975 27
20. Shrimp (heads-on) and fish landed by shrimp trawlers in Florida between 1971 and 1975 28
21. Principal fish comprising the white shrimp by-catch of the north- eastern coast of Florida, 1931-1935 29
22. Comparison of estimated fish catches by shrimp trawlers in Florida with reported landings 30
23. Species of fish landed by shrimp trawlers on the east coast of Florida, 1974 31
24. Estimated fish catches of the commercial shrimp fleet for the South Atlantic Region between 1973 and 1975 32
25. A comparison of the amount of blue crabs landed by shrimp trawlers to that landed by all gear types 34

Abstract

Fish:shrimp (heads-on) ration ranged from a low of $1.2: 1$ to a high of $4.0: 1$. Expansion of ratios indicated that an avarage of 69.4 m 111 ion lbs of fish were caught by shrimp trawlers each year from 1973-1975. This was more than 24 times the 2.9 million 1 bs reportedly landed each year. Flounders and edible-size kingfish, spot, and croaker were the predominant species landed, while industrial-size fish (primarily small sciaenids) were discarded.

INTRODUCTION

Shrimp represent the most valuable fishery resource of the South Aclantic states (North Carolina, South Carolina, Georgia, and Florida). Fishermen catch large quantities of fish in their shriap trawls, most of which are small and suitable only for industrial use. Of the South Atlantic states, only North Carolina has facilities to process industrial fish and consequently, the majority of the incidental catch of the South Atlantic states is discarded.

The objectives of this report are to synchesize knowledge of the incidental catch and to assess the biological magnitude of the resource. Knowing the extent of the under-utilized resource will enable economists and industry to plan for its eventual utilization.

LITERATURE SURVEY

A fraction of the incidental catch of commercial trawlers consists of juveniles of commercial and sport fishes. In the $1930^{\prime} \mathrm{s}$, when the trawl fishery was in its Infancy, Lindner (1936) discussed the possible consequences of shrimp trawling on commercial and eport fish stocks, and the dialogue continued through the 1950 's (Latham 1951, Lunz et a1. 1951, Lunz 1955, Gunter 1956, Roelofs 1950, and Tiller 1951). There is presently no evidence that shrimp trawling activities are depleting stocks of commercial fish. In fact, in the Gulf of Mexico, a 3-fold increase in fishing effort during the last 20 years has not been followed by a decrease in fish catches (Juhl 1974).

It was not until the 1940^{\prime} s that serious consideration was given to utilization of incidental or "trash" species. In 1946, Baughman (1950) est Zhated that over 1 b111ion Ibs of scrap fish were caught along the South Atlantic and Culf Coasts. He proposed on-board reduction of "scrap" fish to stickwater which could be further refined on land to fish meal, oil, and condensed fish solubles. Vincent (1951) estimated from landing data that 502 m 11110 n lbs of trash fish were caught by the shrimp fleet along the Gulf Coast in 1949; ut111zation of by-catch as well as waste from shrimp canneries to produce fish meal for poultry, hog and dog food could yield more than $\$ 3$ million profit per year. Cornell (1948) investigated potential by-products of the South Carolina fishing industry, He estimated that in 1947 the shrimp industry produced more than 2000 tons of waste products which "should have been by-products".

In 1959, personnel of the Bears Bluff Laboratory, South Carolina, estimated that $\$ 266,000$ could have been realized by routinely processing fish scraps. crab scraps and shrimp heads (Anonymous 1959). These estimates did not include revenues that could be derived from landing the incidental catch from shrimp trawlers of between 37,500,000 and 40,000,000 lbs (Lunz 1960). Jones ($1959 \mathrm{a}, 1959 \mathrm{~b}, 1960$) examined the potential of several areas of the United States to provide a source of industrial fish for the pet food industry. Fishermen along the South Atlantic coast of the United States clained that they could produce up to 4 tons of fish daily while shrimping (Jones 1960). Bcaumariage (1968) estimated that 1.3 million lis of $f 1$ sh were discarded by the Florida shrimp fleet along the Northeastern coast. Bullis and Carpenter (1968) estimated that the United States Atlantic Coast south of Cape Hatteras has a resource potential of 2,790 million lbs of industrial fish annually; this was more than 300 times the 1968 level of commercial fishery production.

Since the $1950^{\circ} \mathrm{s}$, industrial fisheries have developed in the Gulf of Mexico (Gutherz et al. 1975, Haskel1 1961, Hothmayr 1965), California (Best 1959), New England (Edwards and Lux 1958) and North Carolina (Fahy 1966, Wolff 1972). In general, fish are canned for pet food or frozen for mink food and crab pot bait, although other markets and refining processes are being investigated. Holston (1960) explored potential markets for industrial fish products and discussed the nutritional value of fish meal in improving man's diet, and Beaumariage (1968) examined several industrial fish reduction processes and compared results obtained using trash fish with those obtained using other species. Pigott (1973) presented several experimental processes that would enable more efficient utilization of fishery by-products.
Martinez (1977) described a new process developed in Colombia that produces blocks of minced fish from shrimp by-catch. The fish are headed and gutted by hand and fed into a deboning machine; minced flesh recovery is estinated at 80 to 90%.

METHODS

Fishishrimp (heads-on) ratios were determined from examination of published and unpublished reports. Mean ratio estimates and associated 957 confidence intervals (calcullted either from raw or logarithmically transformed data) are of 11 ttle value to fishery managers because of their variability (Keiser 1976). Therefore a median fish:shrimp ratio was computed and its confidence Interval defined as the range encompassing 50% of the individual ratios (i.e. 25 th and 75 th percentiles). These ratios were then multiplied times shrimp landings (heads-on) to estimate the amount of fish caught during shrimping operations. Percent utilization of the shrimp by-catch was computed by comparing the quantity of fish landed by shrimp trawlers to estimated fish catches. The fish landing data were obtained from National Marine Fishery Service (MMFS). The preciseness of these data cannot be determined since NMFS collected much of the landing statistics
using telephone surveys. Hence, percent utilization calculations are only approximate.

NORTH CAROLINA

Shrimp Fishery
Shrimp populations are discontinuous along the North Carolina coastline. The majority of shrimping is done in sounds and inlets with very little fishing activity conducted in offshore waters. Pamlico Sound produces approximately 50% of the state's shrimp with Core Sound, Bogue Sound, Beaufort Inlet, Ocracoke Inlet and the mouths of the Neuse River, Newport River, New River and Cape Fear River being other areas of fishing activity.

Production for 1971-75 fluctuated between 4.2 and $8.5 \mathrm{mil1}$ ion 1 bs with average yearly landings of 6 million lbs (heads-on) shrimp (Table 1). Hrown and pink shrimp comprise the mijority of the landings, 62.2 and 26.2π, respectively, with white shrimp representing less than 12%. Night fishing is legal in North Carolina with night-rime fishing directed at brown and pink shrimp. Although better catches of these species occur at night, brown shrimp, at least, are also vulnerable to the fishery during the day (Wolff 1972)

The shrimp season opens on January 1. The pink shrimp fishery generally peake by mid-May, while the brown shrimp season extends from June till late fall. White shrig occur primarily in the vicinity of the Cape Fear Estuary where they form the basis of a fall fishery offshore.

Literature Review

Latham (1951) sampled two shrimp seasons in Pamlico Sound to escimate the incidental catch of the fleet. Fish:shrimp (presumably heads-on) ratios ranged from 2.00:1 to $14.54: 1$ with a mean scasonal ratio of $4.46: 1$ in 1950 and $2.00: 1$ in 1951. He concluded that an estimated 12 million 1 bs of young fish were destroyed each year by the shrimp trawlers, and that at least onehalf of these were young of commercial species. Roelofs (1950) sampled Core and Pamlico Sounds and found considerably lower ratios. In Core Sound, ratios ranged from $0.56: 1$ to $6.67: 1$ with a mean ratio of 1.99:1; Pamlico Sound was comparable with a mean ratio of $1.70: 1$. Tiller (1951) reported ratios of 6.54 and 8.41 during a one-day trip to Pamlico Sound in September, 1951. Holff (1972) as part of a trash fish survey, also sampled shrimp catches to determine fish:heads-on shrimp discard ratios and calculated a mean fish:heads-on shrimp ratio of $5.41: 1$. Additional ratio information was recorded by Connell Purvis (Personal communication) during the Pamlico Sound shrimp survey during fall, 1976. Estimates of by-catch in terms of catch-per-hr are not avallable for the North Carolifa fishery.

Several reports (Brown and McCoy, 1969, Yahy, $1965 \mathrm{a}, 1965 \mathrm{~b}$, Wolff 1972) have been published describing the North Carolina "trash fishery", a fishery based on fish caught incidental to fin-fishing activities

In the Atlantic Ocean between Cape Hatteras and Bogue Inlet. At the present time, the trash fish fishery is operating at lower levels than previously. Boats have diversiffed for flounder and scallop fishing and trawl as far away as Massachusetts for groundfish: previously, boats went further south during the winter or scrap fished. In 1977, several boats scrap fished to supply a demand for crab pot bait (Maury Wolff, personal communication, September 9 , 1977). The finfish fleet lands at least some of its incidental catch, while the shrimp fleet discards the majority of its by-catch. Fully utilizing the incidental catch of North Carolina may require modification of the fishing laws which presently restrict the amount of non-food fish that can be landed (Section 0600, North Carolina Fishing Regulations for Coastal Water 1977).

Ratio Estimates

Examination of the above studies shows that fishishrimp ratios were highly variable. Because of the differences in gear from the 1950 's to the present, data before 1960 vere excluded from ratio estimate computations. Ratios ranged from $0.6: 1$ to 192.3:1 with day-time ratios consistently higher than night-time ratios (Table 2). Wolff (1972) noted that the lower ratlos at night resulted from higher shrimp catches rather than lower fish catches; shrimp accounted for 13.7% of the catch by weight during the day compared to 17.7% by weight at night. It is not possible to allocate pink, brown and whte shrimp catches from landing records to day or night, therefore, night and day ratios were pooled to provide a combined ratio estimate despite night/day differences. The combined estimate from each study was similar and accordingly, data were pooled to provide an overall median ratio estimate of $4.1: 1$ with confidence 1 imits of 1.7 and 15.1 . Of the 62 ratios in the pooled sample, 3 ratios exceeded $100: 1$ (5\%) whereas 9 were between $20: 1$ and $100: 1$ (15\%). It appears, therefore, that while ratios greater than $100: 1$ are relatively infrequent, ratios less than 100:1 should be considered representative of the fishery and included. Exclusion of ratios greater than 100:1 resulted in a combined day/night overall ratio of $4.0: 1$ with confidence 1 imits of 1.7 and 10.5 .

Species Composition of Traul Samples

Ten species or assemblages of species accounted for 90.2% of the shrimp by-catch with spot, Aclantic croaker, pigfish and edible flounder comprising 75.3% of the total (Table 3). Species composition of landings was similar to that of the by-catch. Spot, flounder, Atlantic croaker, weakfish and kingfish accounted for 96.47 of landings (Table 4) and 72.2% of trawler catches (Table 3); however, the percentage of flounder and pigfish in trawl catches differed greatly from that in the landings.

By-catch Utilization

Shrimp trawlers caught an estimated 73.2 million 1 bs of fish between 1973 and 1975; of these, 3.8 million 1 bs were reportedly landed (Table 5). Monthly landings were highest berween July and October

Table 1. Shrimp (heads-on) and fish landed by shrimp trawlers in North Carolina between 1971 and 1975. (Source: North Carolina landings and unpublished NMFS data).

	Shrimp	Landings (1bs)	Percent by Species	Fish Landings (
1971	brown	5,111,811	66.9	
	pink	1,926,623	25.2	
	white	603,550	7.9	
	TOTAL	7,641,984		*
1972	brown	3,203,846	76.5	
	pink	793,203	19.0	
	white	189,948	4.5	
	TOTAL	4,186,997		*
1973	brown	1,696,660	33.5	
	pink	1,525,330	30.1	
	white	1,843,065	36.3	
	TOTAL	5,065,055		809,282
1974	brown	6,132,690	72.5	
	pink	2,125,313	25.1	
	white	200,486	2.4	
	TOTAL	8,458,489		1,308,067
1975	brown	2,578,038	54.3	
	pink	1,525,330	32.1	
	white	644,482	13.6	
	TOTAL	4,747,850		1,708,534
1971-	brown	18,723,045	62.2	
1975	pink	7,895,799	26.2	
	white	3,481,531	11.6	
	TOTAL	30,100,375		

*Indicates Data not Presently Available

TABLE 2. Median fish:heads-on shrimp ratio and confidence intervals (25 th and 75 th percentiles) determined from North Carolina data.
(Source: Wolff 1972)

$\begin{aligned} & 1970-1971 \\ & \text { DAY } \\ & \hline \end{aligned}$	(Source: Wolff 1972)				
	$\underline{\mathrm{n}}$	NIGHT	n	COMBINED	n
$3.3 \leq 9.1 \leq 19.2$	16	$1.2 \leq 2.6 \leq 17.8$	19	$1.3 \leq 5.2 \leq 17.8$	35
$2.1 \leq 8.8 \leq 19.2$	15*	$1.2 \leq 2.6 \leq 17.8$	19	$13 \leq 4.9 \leq 13.6$	34*
$2.1 \leq 5.9 \leq 9.7$	12**	$1.2 \leq 1.7 \leq 3.8$	15**	$1.2 \leq 29 \leq 7.3$	27**

September to October, Pamlico Sound (Source: Purvis, personal communication)

$\frac{1976}{\underline{D A Y}}$	\underline{n}	$\underline{N I G H T}$	\underline{n}	$\underline{\text { COMBINED }}$	\underline{n}
$1.5 \leq 15.6 \leq 90.1$	6	$2.2 \leq 3.7 \leq 5.7$	21	$1.9 \leq 4.0 \leq 15.8$	27
$1.5 \leq 15.1 \leq 26.0$	$5 *$	$2.0 \leq 3.7 \leq 4.3$	$20 *$	$2.1 \leq 3.9 \leq 9.2$	25^{*}
$1.5 \leq 8.3 \leq 15.6$	$4 * *$	$2.0 \leq 3.7 \leq 4.2$	$19 * *$	$1.9 \leq 3.6 \leq 8.0$	$23 * *$

Pooled Data

$\underline{\text { DAY }}$	\underline{n}	$\underline{\text { NIGHT }}$	\underline{n}	$\underline{\text { COMBINED }}$	\underline{n}
$2.3 \leq 9.2 \leq 30.3$	22	$1.2 \leq 3.9 \leq 23.1$	40	$1.7 \leq 4.1 \leq 15.1$	62
$2.3 \leq 9.2 \leq 15.6$	$20 *$	$1.7 \leq 3.7 \leq 11.4$	$39 *$	$1.7 \leq 4.0 \leq 10.5$	$59 *$
$1.5 \leq 5.5 \leq 9.8$	$16 * *$	$1.7 \leq 3.6 \leq 5.1$	$34 * *$	$1.5 \leq 3.6 \leq 6.5$	$50 * *$

[^1]Table 3. Species composition and percent by weight in shrimp catches in North Carolina. (Source: Wolff, 1972).

Rank	Species	Percent by Weight \qquad of Discard
1	Leiostomus xanthurus (spot)	38.7
2	Micropogon undulatus (Atlantic croaker)	24.2
3	Orthopristis chrysoptera (pigfish)	8.4
4	Paralichthys sp. (2) (Edible flounders)	4.0
5	Cynoscion regalis (weakfish)	3.9
6	(*) (Inedible flounders)	3.1
7	Lagodon rhomboides (pinfish)	2.8
8	Synodus foetens (inshore lizardfish)	2.0
9	Calamus sp. and Stenotomus sp. (porgies)	1.7
10	Menticirrhus sp. (2) (kingfishes)	1.4

(*) Inedible flounders consisted of blackcheek tonguefish (Symphurus plagiusa), fringed flounder (Etropus crossotus), windowpane (Scophthalmus aquosus), spotted whiff (Citharichthys macrops), hogchoker (Trinectes maculatus), oscellated flounder (Ancylopsetta quadrocellata), and naked sole (Gymnachirus melas).

Table 4. Species of fish landed by shrimp trawlers in North Carolina, 1973-1975. (Source: NMFS)

Species	1973	1974	1975	Total	Percent
Spot	250,685	412,577	749,882	1,413,144	37.0
Flounder	244,518	398,271	379,794	1,022,583	26.8
Atlantic croaker	163,146	255,596	330,061	748,803	19.6
Weakfish	40,060	123,290	124,674	288,024	7.5
Kingfish	90,999	70,755	48,596	210,350	5.5
Bluefish	8,151	29,831	36,822	74,804	1.9
Butterfish	1,507	6,453	31,744	39,704	1.0
Pigfish	4,509	4,322	3,940	12,771	0.3
Spanish mackerel	1,213	3,251	360	4,824	0.1
Black mullet	1,700			1,700	<0.1
Spotted seatrout	120	743	630	1,493	<0.1
Blowfish	1,220			1,220	<0.1
King mackerel		644		644	<0.1
Black drum	126	200	228	554	<0.1
Sturgeon	141	142		283	<0.1
Red drum		95		95	<0.1
Sand perch		118		118	<0.1
TOTAL FISH	808,095	,306,288	,706,731	3,821,114	100.0\%

Table 5. Comparison of estimated fish catches by shrimp trawlers in North Carolina with reported landings.

| | FISH LANDINGS
 $\left(1000^{\prime} \mathrm{s}\right.$ of lbs$)$ | ESTIMATED FISH CATCHES
 $\left(1000^{\prime} \mathrm{s}\right.$ of 1 bs$)$ | PERCENT OF ESTIMATED FISH
 CATCH REPORTEDLY LANDED ${ }^{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1973 | 808.1 | $8610.6 \leq 20260.2 \leq 53183.1$ | 4.0% |
| 1974 | 1306.3 | $14379.4 \leq 33833.9 \leq 88814.1$ | 3.9 |
| 1975 | 1706.7 | $8071.3 \leq 18991.4 \leq 49852.4$ | 9.0 |
| $1973-1975$ | 3821.1 | $31061.3 \leq 73085.5 \leq 191849.6$ | 5.22 |

[^2](Table 6). Although percent utilization of by-catch increased during this time, an estfmated 95% of the by-catch was discarded.

SOUTH CAROLINA

Shrimp Fishery
In South Carolina, the major commercial shrimping area extends from Georgetown south to Calibogue Sound. Boats trawl for shrimp along the coastline out to 3 miles from shore in depths of 3 to 10 m . In late summer and carly fall some sounds and bays are usually opened for commercfal shrimping. Night trawling is illegal from September 1 to December 31. Between 1971 and 1975, shrimp production averaged 8.8 allion lbs per year ranging from 7.6 m 111 ion 1 bs in 1974 to 11.0 million 1 bs in 1971 (Table 7). White shrimp comprised 74.75 of landings and brown shrimp 25.3%; pink shrimp accounted for an insignificant part of the catch. The shrim season extends from May to December. Large "roe" white shrimp support the fishery from May to June, young-of the year brow shrimp from July to early August, and young-of-the-year white shrimp from mid-August to the end of the season.

Liferature Review

Comparatively little research has been directed towards the fish fauna of South Carolina's nearshorewaters. Investigators have murveyed South Carolina's estuaries (Curtis, 1971, 1972; Shealy, Miglarese and Joseph, 1974), the surfzone (Anderson et a1.. 1977; Cupka, 1972), the offshore watern (Barans and Burre11, 1976, Bearden and McKenzie, 1971, Struhsaker, 1969), and studied individual species - Atlantic croaker (Bearden, 1964), king whiting (Bearden. 1963), sea trout (Lunz and Schwartz, 1970) and spot (Dawson, 1958). Anderson (1968), in the $1930^{\prime} \mathrm{s}$, identified and enumerated fish caught in trawle during a survey of white shrimp grounds; eatch rates were presented as the number of fish caught per hr. In the $1940^{\prime} \mathrm{s}$, Lunz (1944) sampled several shrimp trawlers and reported that 36π of the eatch consisted of "nonusable fish, crabs, and other scrap". Keiser (1976) presented the results of a 2-yr study designed to estimate the quantity of fish caught by the shrimp fleet and to determine the species composition of the catch. Fish:shrimp (heads-on) ratios determined from 280 samples were used to estimate the total fish catch; eatch rates were presented in terms of $\mathrm{kg} \mathrm{hr}{ }^{-1}$.

Ratio Estimates

Results of 280 trawl samples indicated that the median ratio varied scasonally $2.58: 1$, May to August; 1.20:1, September to December; confidence 11mits (25th and 75th percent1les) were 1.24 to 5.43 and 0.56 to 2.66 , respectively. Multiplication of these ratios times shrimp landings indicated that in $1975,15.9$ million 1 bs of fish were caught by shrimp trawlers.

Fish Catch Rates

Catch-per-hr data exhibited wide monthly variation. In January, March,

April, October, and December, fish catches averaged $90 \mathrm{lbs} \mathrm{hr}{ }^{-1}$, whereas in all other months, catches averaged over $119 \mathrm{1bs} \mathrm{hr}^{-1}$. Peak catches occurred in May and November. The wide monthly fluctuations in catch-perhr data probably reflect: 1) differences In the efflefency of different classes of fishing boats, 2) differences in the skill of various boat captains in avoiding schools of fish, 3) non-random distribution of fish, and 4) gear modifications in bottom ine, net design and flotation (Keiser, 1976).

Spectes Composition of Trawl Samples

Anderson (1968) and Keiser (1976) provide inforeation on the species composition of shrimp trawl catches. Anderson reported that 6 families (sciaenids, gadids, clupeids, engraulids, carangids, and cynoglossids) represented 93.5 Z of the shriap trasl eatch. In Keiser's study, 11 fanllies represented 97.5% of the catch. In both investigations, sciaenids vere the most abundant fish in trawl samples with six species of sefaenids comprising 63.9% of trawl samples during the shrimping season; menhaden, catfish, cownose rays and Spanish mackerel accounted for $18,0 \%$ (Table 8).

Pish Landinge by South Carolina Trawlers

Annual fish landings by South Carolina shrimp trawlers ranged from 210,706 to 356,528 1bs between 1973 and 1975. Landings were generally highest between July and October (Table 9). Monthly landings ranged from a high of 69.791 lbs in September 1973, to a 100 of 615 lbs in April 1974. Kingfish, flounder and spot were predominant species in landings comprising 84.9 Z of the $3-\mathrm{yr}$ total (Table 10).

By-catch Utilization

Of an eatimated 39.7 million lbs of fish caught by shrimp trawlers between 1973 and $1975,0.8=11110 n 1$ bs or 2% of the catch was reportedly landed (Table 11). Utilization of some species approached 50% (Table 12). The small size of spot and croaker explains their not being landed, whereas marketable mackerel were discarded for lack of selection by fishermen and/or buyers. At the present time, most fish utilized are sold in the round for direct human consumption. Any significant increase in utilization would require processing of industrial-size fish.

GEORGIA

Shrimp Fishery
Shrimp trawling is conducted along the entire Georgia coastline from the sounds and bays to 5 to 7 miles offshore. Some bays and sounds are open from September 1 to December 31 , but night travling for shrimp is illegal. Between 1971 and 1975, shrimp production averaged 8.1 million lbs (heads-on) per year ranging from 7.4 million 1bs in 1972 to 9.1 million ibs in 1971 (Table 13). White shrimp comprised 85% of landings during this period, and brown shrimp the remaining 15\%. The shrimp season extends from June to December with

TABLE 6. Pounds of fish landed monthly by shrimp trawlers in North Carolina, 1973-1975. (-) Indicates none landed. (Source: NMFS)

1973

Jan	-	8,900	-
Feb	-	3,500	-
March	-	4,056	-
April	-	14,619	393
May	21,218	65,554	78,171
June	45,529	75,619	54,781
July	87,089	89,510	107,763
Aug	93,752	285,783	185,763
Sept	166,657	375,598	228,662
Oct	300,594	311,059	$1,002,571$
Nov	93,995	73,869	48,971
Dec	448		1,459
			$1,708,534$

Table 7. Shrimp (heads-on) and fish landed by shrimp trawlers in South Carolina between 1971 and 1975. (Source: South Carolina landings and unpublished NMFS data).

	Shrimp	Landings (lbs)	Percent by Species	Fish Landings (1bs)
1971	brown	2,753,251	25.1	
	pink			
	white	8,207,147	74.9	
	TOTAL	10,960,398		*
1972	brown	2,246,790	27.3	
	pink			
	white	5,989,195	72.7	
	TOTAL	8,235,985		*
1973	brown	1,719,267	20.4	
	pink			
	white	6,706,653	79.6	
	TOTAL	8,425,920		356,528
1974	brown	2,077,977	27.5	
	pink			
	white	5,490,009	72.5	
	TOTAL	7,567,986		210,706
1975	brown	2,380,937	26.4	
	pink			
	white	6,641,873	73.6	
	TOTAL	9,022,810		247,178
$\begin{aligned} & 1971- \\ & 1975 \end{aligned}$	brown	11,178,222	25.3	
	pink			
	white	33,034, 877	74.7	
	TOTAL	44,213,099		

*Indicates Data not Presently Available

Table 8. Species composition of South Carolina shrimp trawl samples May to December 1974 and May to mid-August 1975.

Rank	Species	Percent by Weight of Discard
1	Leiostomus xanthurus (spot)	40.2
2	Brevoortia tyrannus (Atlantic menhaden)	10.3
3	Micropogon undulatus (Atlantic croaker)	8.8
4	Stellifer lanceolatus (stardrum)	5.0
5	Menticirrhus americanus (Southern kingfish)	5.0
6	Arius felis (sea catfish)	3.4
7	Cynoscion regalis (weakfish)	3.0
8	Rhinoptera bonasus (cownose ray)	2.2
9	Scomberomorus maculatus (Spanish mackerel)	2.1
10	Larimus fasciatus (banded drum)	1.9
	TOTAL PERCENT	81.9

TABLE 9 . Pounds of fish landed monthly by shrimp trawlers in South Carolina, 1973-1975. (-) Indicates none landed. (Source: NMFS)

	1973	1974	1975
Jan	-	-	-
Feb	-	-	-
March	-	-	-
April	-	615	-
May	8,191	18,590	32,979
June	33,543	10,785	29,148
July	41,252	48,953	49,137
Aug	57,879	38,480	16,648
Sept	61,005	38,098	39,418
Oct	69,791	38,078	36,770
Nov	45,666	15,103	34,514
Dec	39,201	2,004	8,564
TOTAL	356,528	210,706	247,178

Table 10. Species of fish landed by shrimp trawlers in South Carolina, 1973-1975. (-) Indicates none landed. (Source: NMFS)

SPECIES	1973	1974	1975	TOTAL	PERCENT
Kingfish	193,419	109,119	92,756	395,294	48.54
Flounder	74,406	45,036	58,411	177,853	21.84
Spot	58,880	23,742	36,003	118,625	14.56
Shark	16,069	24,209	31,054	71,332	8.76
Spotted seatrout	4,683	656	8,229	13,568	1.66
Spanish mackerel	2,094	632	8,049	10,775	1.32
Atlantic croaker	2,339	3,346	3,280	9,015	1.11
Menhaden	-	1,585	5,738	7,323	0.90
Pompano	3,568	109	1,199	4,876	0.60
Red drum	620	-	1,336	1,956	0.24
Atlantic sheepshead	350	1,342	50	1,742	0.21
Blackdrum	-	495	500	995	0.12
Gray seatrout	50	-	573	623	0.08
King mackerel	-	234	-	234	0.03
Bluefish	-	142	-	142	0.02
Sturgeon	-	59	-	59	0.01
TOTAL FISH	356,528	210,706	247,178	814,412	100.00\%

TABLE 11. Comparison of estimated fish catches by shrimp trawlers in South Carolina with reported landings.

| FISH LANDINGS
 $\left(1000^{\prime} \mathrm{s}\right.$ of lbs$)$ | ESTIMATED FISH CATCHES
 $\left(1000^{\prime} \mathrm{s}\right.$ of lbs$)$ | PERCENT OF ESTIMATED FISH
 CATCH REPORTEDLY LANDED 1 |
| :---: | :---: | :---: | :---: |
| 356.5 | $6951.2 \leq 14642.2 \leq 46060.9$ | 2.4% |
| 210.7 | $8031.0 \leq 9081.6 \leq 36507.0$ | 2.3 |
| 247.2 | $7338.0 \leq 15948.9 \leq 33434.0$ | 1.5 |
| 814.4 | $22320.2 \leq 39672.7 \leq 116001.9$ | 2.0 |

$1_{\text {Based on median catch }}$

TABLE 12. Comparison of estimated catches and reported landings for selected species caught by South Carolina shrimp trawlers between 1973 and 1975.

	PERCENT IN CATCHES	ESTIMATED TOTAL FISH LANDINGS (1000 's of lbs)	ESTIMATED ZATCHES OF SELECTED SPECTES (1000 's of 1 bs)	REPORTED LANDINGS OF SELECTED SPECIES (1000 's of lbs)	\% UTILIZATION
Edible Flounders	1.0	39672.7	397.7	177.8	44.8\%
Kingfish	5.0	39672.7	1983.6	395.3	19.9
Spanish Mackerel	2.1	39672.7	833.1	10.8	1.2
Spot	40.2	39672.7	15948.4	118.6	0.7
Atlantic croaker	8.8	39672.7	3491.2	9.0	0.2

Table 13. Shrimp (heads-on) and fish landed by shrimp trawlers in Georgia between 1971 and 1975. (Source: Georgia landings and unpublished NMFS data).
$\left.1971 \begin{array}{lllll}\text { brown } \\ \text { pink } \\ \text { white } \\ \text { TOTAL }\end{array} \quad \begin{array}{l}1,152,835\end{array}\right)$

[^3]overwintered "roe" white shrimp fished in June, young-of-the-year brown shrimp in July and August, and young-of-the-year white shrimp in auturn.

Literature Revieu

Anderson (1968) reported on fish caught incidental to a white shrimp survey conducted between 1931 and 1935 in Georgia's inshore and offshore waters. The Bureau of Commercial Fisheries at Brunswick, Georgia, surveyed the fish of the beachfront and marsh in the mid-1960's (Jorgensen and Miller 1968, Miller and Jorgensen 1969). Knowliton (1972) conducted a survey of fish caught incidental to shrimping operations between 1969 and 1971. Hoese (1973) reported on a trawl study conducted on the central Goorgia foshore continental shelf and adjacent Doboy Sound from 1966 to 1967. Mahood et Al . ($1974 \mathrm{a}, 1974 \mathrm{~b}, 1974 \mathrm{c}, 1974 \mathrm{~d}$) inventorfed estuarine and inshore oceanic waters of Ceorgia using trawls, sefres, and $g 111$ nets from October 1970 to September 1973.

Ratio Estimates

Knowiton (1972) presents the most recent by-catch information of the Georgia shrimp fleet. Fishtheads-on shrimp ratios were calculated for 195 trawl samples from Knowlton's raw data. Ratios ranged from a low of $0.11: 1$ to a high of $49500: 1$; the latter resulted froma catch contafning 495 lbs of fl ah and 0.01 lbs of shrimp. Eleven ratios (5.6%) exceeded $20: 1$ with 72% of high ratios occurring on the first tow of the day. Because subsequent tows by the same boat had ratios leas than 20:1, the high ratios were considered not to be representative of the shrimp fleet and were excluded from ratio calculations.

Ratios varied greatly fromyear-to-year and from month-to-month. In general fish: heads-on shrimp ratios were more variable In 1970 than in 1969 (Figure 1). Monthly mean ratios ranged from $1.2: 1$ to $5.4: 1$ with one exception, December, 1969, which was based on only one sample (Table 14). Knowlton analyzed his data by regions corresponding to the three NMFS statistical districts, however, my analysis of mean ratios calculated from each district revealed no statistical differences among mean ratios. This auggests that one ratio estimate is adequate for the entire Georgia coastline.

The diatribution of the ratios was markedly skewed (Figure 2), and the data were logarithmically transformed to obtain a pore normal distribution (Figure 3). A mean ratio of 2.55:1 with 95% confidence 11mits of $0.33: 1$ and $19.54: 1$ was calculated From the log-transformed data. The median of 184 ratfos was 2.56:1 with confidence limits of $0.98: 1$ to $4.43: 1$. Expansion of the sedian ratio reveals that in 1975 an estimated 21 million lbs of fish were caught by shrimp trawlers incidental to shrimping activities.

Fiah Catch Rates

Knowlton, Anderson, and Hoese presented their findings as catch-par-unit
effort (cpue). Anderson reported that the number of $f 18 \mathrm{sh} \mathrm{hr}{ }^{-1}$ increased gradually from a low of 800 to $900 \mathrm{ffsh}_{\mathrm{hr}} \mathrm{hr}^{-1} \mathrm{ft}$ February and March to approximately 2400 in November and December. Knowlton's cpue rates are more variable. Catch rates were highest in May, $2501 \mathrm{bs} \mathrm{hr}^{-1}$ decreasing to $140 \mathrm{lbs} \mathrm{hr}^{-1}$ in June to $80 \mathrm{lbs} \mathrm{hr}^{-1}$ in October and again increasing to 200 lbs hr^{-1} in November; overall cpue for the study averaged $128.71 \mathrm{bs} \mathrm{hr}{ }^{-1}$. In an earlier study, Hoese (1973) reported that catches with a 40 ft balloon shrimp trawl towed for $10-20 \mathrm{~min}$ along the beach averaged 180 Ibs of fish hr^{-1} with two catches exceeding 500 lbs hr^{-1}. These rates are considerably higher than those reported by Knovlton. Hoese's data, however, cannot be compared directly to Knowlton's as 1) Hoese did not fish his gear in a commercial manner and 2) Hoese did not indicate monthly variation in epue data.

As part of a statewide survey of estuarine and inshore saters, Mahood et al. (1974a, 19745, 1974c, 1974d) sampled close inshore oceanic waters with a 40 ft flat shrimp trawl for a 1 yr period. An overall average of epue for the coast was not provided, sut yearly catch rates ranged from 23.5 ibs hr^{-1} in the Northern Section to $41.2 \mathrm{lbs} \mathrm{hr}{ }^{-1}$ in the Southern Sector. These catch rates are considerably lower than those published by either Knowlton or Hoese.

Species Composition of Trawl Samples

Anderson 1968, Dahlberg and Odum 1970, Hoese 1973 and Knowlton 1972 provide information on species composition of nearshore waters. These studies cannot be directly compared as Knowlton's data vere presented as percent by weight whereas both Hoese's and Anderson's are in terms of percent by number (Table 15). The samples were quite similar at the family level. Sciaenids were the predominant fasily in the four studies comprising between 63.5 and 72.5% of the total catch. Many of the apparent differences in rankIng predoninant species may be attributed to differences in data presentation. Hoese noted several differences between his findings and those of other studies: 1) Anderson caught fewer Symphurus plagiusa but relatively more Etropus crossotus; 2) Anderson caught large numbers of Chloroscombrus chrysurus in outside waters "perhapa indicating a greater abundance at that time"; and 3) Anderson as well as Dahlberg and Odum commonly found Arius felis in the catches which was taken only occasionally by Hoese.

Finh Landings by Georgin Trawlern

Annual fish landings by Georgia shrimp boats have fluctuated between 313,831 and $382,735 \mathrm{lbs}$ during the last three years (Table 16). Monthly landfngs for the shrimping season ranged from 30,942 to 80,854 lbs; highest landings occurred between September and November. Kingfish and flounder were the predominant species, together comprising 81% of the 3 year landings, whereas "industrial fish" represented less than 18 (Table 17).

* Indicates 1 or more ratios $>20: 1$.

FIGURE 1. MONTHLY VARIATION IN FISH:HEADS-ON SHRIMP RATIOS DERIVED FROM COMMERCIAL SHRIMP TRAWLER CATCHES.

TABLE 14. Average monthly fish:heads-on shrimp ratio estimates in Georgia and associated 95% confidence intervals (5.05 standard deviations) calculated from $\log _{10}$ transformed data; ratios greater than 20:1 excluded from computations.

YEAR	MONTH	$-\mathrm{t} .05^{\mathrm{s}}$	MEAN	${ }^{+t} .05^{\mathrm{s}}$	MINIMUM RATIO	MAXIMUM RATIO	n

1969

August	.12	1.40	16.85	0.26	8.11	13
Sept	0.20	1.19	6.96	0.23	11.55	31
Oct						
Nov	0.47	1.81	6.98	0.76	6.21	9
Dec		0.87				1

1970

July	0.89	5.37	32.32	0.75	18.00	23
August	0.51	4.16	34.02	0.11	15.30	33
Sept	0.52	3.59	25.00	0.36	17.60	25
Oct	0.59	3.05	15.75	0.67	9.62	22
Nov	0.53	2.71	13.96	0.73	10.50	12
Dec	0.22	1.18	6.37	0.26	6.30	14

1971

$$
\text { Jan } \quad 1.51
$$

FIgure 2. DISTRIBUTION OF FISH:HEADS-ON SHRIMP RATIOS (BY WEIGHT) CALCULATED FROM COMMERCIAL SHRIMP

FIGURE 3. PLOT OF LOG ${ }_{10}$ TRANSFORMED FISH:HEADS-ON SHRIMP RATIOS (BY WEIGHT) FRRM COMERCIAL SHRIMP TRAWLERS FROM AUGUST TO DECEMBER 1969 AMD JULY 1970 TO JANLARY 1971.

TABLE 15. Comparison of the 10 most abundant species in trawls sampled in Georgia.

Species composition of Georgia shrimp trawl samples from July 1969 to June 1971 (Source: Knowlton, 1972)

RANK	SPECIES	$\begin{aligned} & \hline \text { PERCENT BY WEIGHT } \\ & \text { OF DISCARD } \end{aligned}$
1	Leiostomus xanthurus	28.0
2	Micropogon undulatus	20.9
3	Menticirrhus spp	8.9
4	Brevoortia tyrannus	7.0
5	Cynoscion regalis	6.9
6	Stellifer lanceolatus	4.6
7	Dasyatis spp	3.6
8	Arius felis	3.3
9	Larimus fasciatus	3.2
10	Trichiurus lepturus	2.8
	Total Percent	89.2

Species composition of Georgia trawl samples between August and December, 1965, and January, June, and July, 1966 (Hoese 1973)

RANK	SPECIES	PERCENT BY NU
1	Stellifer lanceolatus	47.3
2	Anchoa mitchelli	29.2
3	Micropogon undulatus	6.6
4	Symphurus plagiusa	5.2
5	Cynoscion regalis	4.9
6	Bairdiella chrysura	1.4
7	Menticirrhus americanus	1.4
8	Leiostomus xanthurus	1.1
9	Cynoscion nothus	0.8
10	Trichiurus lepturus	0.6
	Total Percent	98.5

Species composition of Georgia trawl samples from January to December, 1931-35 (all months and years combined) (Anderson 1968)
RANK SPECIES PERCENT BY NUMBER

1	Stellifer lanceolatus	38.0
2	Micropogon undulatus	10.1
3	Leiostomus xanthurus	7.8
4	Menticirrhus spp	7.1
5	Chloroscombrus chrysurus	6.7
6	Cynoscion regalis	3.6
7	Brevoortia spp	3.1
8	Bagre marinus	2.4
9	Etropus crossotus	2.2
10	Trichiurus 1epturus	2.0
	Total Percent	83.0

TABLE 16. Pounds of fish landed monthly by shrimp trawlers in Georgia, 1973-1975. (-) Indicates none landed. (Source: NMFS)

	1973	1974	1975
Jan	3,049	7,265	4,455
Feb	2,015	-	5,088
March	4,868	-	4,763
April	6,173	13,845	1,913
May	8,264	26,344	32,515
June	37,756	30,942	35,717
July	40,395	38,208	46,649
Aug	51,157	31,708	27,665
Sept	80,854	42,902	57,986
Oct	53,844	48,248	53,578
Nov	57,407	36,356	62,578
Dec	36,953	38,013	40,034
TOTAL	382,735	313,831	372,941

TABLE 17. Species of fish landed by shrimp trawlers in Georgia, 19731975. (-) Indicates none landed. (Source: NMFS)

SPECIES	1973	1974	1975	TOTAL	PERCENT
King fish	216,607	189,903	221,530	628,040	58.72
Flounder	77,304	74,340	89,988	241,632	22.59
Spotted seatrout	24,413	14,467	26,079	64,959	6.07
Spot	33,937	16,368	8,925	59,230	5.54
Atlantic croaker	14,679	8,388	4,104	27,171	2.54
Atlantic sheepshead	5,205	7,022	5,525	17,752	1.66
Red drum	1,453	1,795	8,302	11,550	1.08
Spanish mackerel	4,755	255	5,130	10,140	0.95
Black drum	4,048	857	-	4,905	0.46
Gray seatrout	200	-	2,137	2,337	0.22
Sturgeon	-	-	-	336	769

By-carch Ueflizarion

Of an estimated 61.5 million lbs of \ddagger ish caught between 1973 and $1975,1.72$ were reportedly landed (Table 18). Although the proportion of sciaenfds in the catches (72.52) (Table 15) approximated that in the landings (73.62) (Table 17), there were some striking differences at the species level. Croaker, for example, accounted for only 2.5% of the landings, but 20.92 of the Fl sh caught, whereas kingfish accounted for 58.72 of landings, but only 8.95 of catches. The percentage of bothids in landings is far greater than that in catches. A comparison of estinated catches by species to actual landings (Table 19) show that flourder have the highest rate of utilization (32.7\%) followed by kingfish with 11.5%. Croaker and spot, although predominant in catches (48.9 Z) account for less than 9% of landings. Market acceptability especially interspecies size differences probably explains the differential selectivity by fishermen for these spectes.

FLORIDA

Shrimp Fishery
Shrimping along the east coast of FlorIda (Florida Keys excluded) is restricted to areas north of Ft. Pierce Inlet; further south, the continental shelf becomes too narrow and the bottom is not suitable for trawling. Shrimp landings have remained relatively constant during the last five years, ranging from $2.6 \mathrm{mll-}$ ilon pounds in 1975 to 4.3 million pounds In 1972 (Table 20). Between 1971 and 1975, white shrimp comprised $77,2 \%$ of total shrimp landings, brown shrimp: 22.4% and pink shrimp: 0.4\%. Night trawling is illegal in all counties bordering the Atlantic except during the months of June, July and August.

Liferature Review

By-catch information pertaining to the northeast coast of Florida is Iimited to three studies (Anderson, 1968, Beaumariage, 1968, and Siebenaler, 1952). Joyce (1965) described the fishery of the northeastern coast of Florida and the results of a blological survey conducted between 1961 and 1962; however, no by-catch information was Included in the report. Anderson and Gehringer (1965) described the fishery of the Cape Canaveral area; by-catch fnformation presented was based on the 1930 's survey by Anderson later published in Anderson (1968).

Ratio Estimates

Siebenaler (1952) sampled boats at Mayport and Key West, Florida between March and November 1951, to determine the amount of "usable trash" caught by shrimp bosts. Information obtained from sampling at Mayport was used to derive estimates for the east coast of Florida. "Usable trash" was defined as shrimp heads, undersized shrimp, fish, and crustaceans other than shrimp. The fish component of the "trash fraction" in Mayport averaged 50.3π, ranging from 40.9π in November to 60.2% in May. The overall ratio of "trash":shrimp
(heads-off) was approximately $6: 1$. This corresponds to a fish:shrimp (heads-on) ratio of $3.8: 1$. Siebenaler estimated that 13.7 million lbs of usable trash was caught by the Northeast Florida shrimp fleet in 1951.

Fish Catch Rates

There is very 11 trle information pertaining to catch rates of incidental species by Florida travlers. Siebenaler estimated that daily catches of shrimp trawlers ranged from a high of 732 lbs of $\mathrm{fish} \mathrm{day}^{-1}$ in May to a low of $342 \mathrm{lbs}^{\mathrm{b}} \mathrm{day}^{-1}$ in September. Anderson's (1968) yearly average catch rate was $2700 \mathrm{fish} \mathrm{hr}^{-1}$ ranging from approximately 200 fish hr ${ }^{-1}$ in April, May and June to 4500 to $5500 \mathrm{fish} \mathrm{hr}^{-1}$ between October and November.

Species Composition of Traw1 Samples
Siebenaler reported that at Mayport, whiting, blue crabs, flounder, Spanish mackere1, spot, blueflsh and pompano were the predominant species caught by trawlers. Catches of game and comercially exploited fish species were highest in May, comprising 6.7π of the trawl eateh of fish and shrimp and lowest in September, 0.9\%. No Information was published pertaining to the relative proportion of each species in the samples. The only other study that included catch composition information is from the 1930's (Table 21). The family Sciaenidae was the largest component of the catch comprising between 47.14 in December to 79.8% in July. Carangids comprised 16.5% of yearly samples and were more abundant in October, December, January, April and May than at other times of the year. Arlidae represented 4.6% of yearly catches comprising between 0.4% of the catch in May to 8.7\% in January.

In addition to the fishery for Penaeus, a rock shrimp fishery has recently developed at Cape Canaveral, Florida (Kennedy et al., In press). Important components of the by-catch of this fishery include scallops and portunid crabs (Kennedy, personal communication).

Fish Landings by Florida Trawlers

of an estimated 13.4 million 1 lsg of fish caught incidental to shrimping in 1974 , approximitely $980,000 \mathrm{lbs}(7.2 \%)$ was landed (Table 22). Kingfish and flounder comprised 83.5\% by weight of fish landed and scinenids as a group, 70.52 (Table 23).

DISCUSSION

Ratios determined from shrimp trawl catches in North Carolina were more variable than those calculated from catches in South Carolina, Georgia and Florida (Table 24). Examination of Eishing activities may offer an explanation for the wider variation in North Carolinat 1) fish catches may be more varlable in sounds than in nearshore waters -- 50% of North Carolina production comes from Pamlico Sound in contrast to other states where fishing is conducted generally within 1 to 3 miles of shore: and 2) the pink shrimp by-catch may be nore variable than those of the white

TABLE 18. Comparison of estimated fish catches by shrimp trawlers in Georgia with reported landings.

	FISH LANDINGS $(1000$ ' s of 1 bs$)$	ESTIMATED FISH CATCHES \qquad (1000's of lbs)	PERCENT OF ESTIMATED FISH CATCH REPORTEDLY LANDED ${ }^{1}$
1973	382.7	$8,277.2 \leq 21,622.2 \leq 37,416.6$	1.8\%
1974	313.8	$7,230.7 \leq 18,888.4 \leq 31,800.4$	1.7\%
1975	372.9	$8,052.1 \leq 21,034.1 \leq 32,685.8$	1.8\%
1973-1975	1069.4	$23,560.0 \leq 61,544.7 \leq 101,902.8$	1.7\%

$1_{\text {Based }}$ on median estimated catch.

TABLE 19. Comparison of estimated catches and reported landings for selected species caught by Georgia shrimp trawlers between 1973 and 1975.

	PERCENT IN CATCHES	ESTIMATED TOTAL FISH CATCHES ($1000^{\prime} \mathrm{s}$ of lbs)	ESTIMATED CATCHES OF SELECTED SPECIES (1000 's of 1 bs)	REPORTED LANDINGS OF SELECTED SPECIES \qquad	\% UTILIZATION
Flounders	1.2\%	$61,544.7$	738.5	241.6	32.7%
Kingfish	8.9\%	61,544.7	5,477.5	628.0	11.5\%
Spot	28.0\%	61,544.7	$17,232.5$	59.2	0.3\%
Atlantic croaker	20.9\%	61,544.7	12,862.8	27.2	0.2\%

Table 20. Shrimp (heads-on) and fish landed by shrimp trawlers in Florida between 1971 and 1975. (Source: Florida landings and unpublished NMFS data).

	Shrimp	Landings (1bs)	Percent by Species	Fish Landings (1 bs)
1971	brown	746,560	22.4	
	pink			
	white	2,578,347	77.6	
	TOTAL	3,324,907		*
1972	brown	570,589	13.2	
	pink			
	white	3,749,907	86.8	
	TOTAL	4,320,496		*
1973	brown	478,816	17.0	
	pink	7,121	0.3	
	white	2,327,558	82.7	
	TOTAL	2,813,495		*
1974	brown	1,463,084	41.4	
	pink	6,187	0.2	
	white	2,068,892	58.4	
	TOTAL	3,538,163		979,517
1975	brown	458,381	17.5	
	pink	47,588	1.8	
	white	2,117,464	80.7	
	TOTAL	2,623,433		*
1971-	brown	3,717,430	22.4	
1975	pink	60,896	0.4	
	white	12,842,168	77.2	
	TOTAL	16,620,494		*

*Indicates Data not Presently Available

TABLE 21. Principal fish comprising the white shrimp by-catch of the northeastern coast of Florida, 1931-35 (Source: Anderson 1968).

Species	
(by number)	
Star drum	28.4%
Atlantic croaker	17.5
Atlantic bumper	10.1
Silver seatrout	9.6
Kingfish	7.3
Spot	5.7
Sea catfish	4.5
Moonfish	4.1
Banded drum	1.6
Gafftop catfish	1.2
Total	90.0%

Table 22. Comparison of estimated fish catches by shrimp trawlers in Florida with reported landings.

| | FISH LANDINGS
 $(1000 ' \mathrm{~s}$ of 1 bs$)$ | | ESTIMATED FISH CATCHES
 $\left(1000^{\prime} \mathrm{s}\right.$ of 1 bs$)$ | |
| :--- | :---: | :---: | :---: | :---: | | PERCENT OF ESTIMATED FISH |
| :---: |
| CATCH REPORTEDLY LANDED |

$1_{\text {Based on median eatch }}$
*No landing data available

TABLE 23. Species of fish landed by shrimp trawlers on the east coast of Florida, 1974. (Source: NMFS)

SPECIES

TOTAL POUNDS
PERCENT

Kingfish	662,014	67.58
Flounder	156,382	15.96
Bluefish	31,740	3.24
Gray seatrout	20,460	2.09
Spanish mackerel	7,000	0.71
Spotted seatrout	3,104	0.32
Amberjack	2,700	0.28
Atlantic croaker	2,685	0.28
Spot	2,528	0.26
Food fish (unclassified)	8,440	0.86
Industrial/bait fish	82,464	8.42
TOTAL	979,517	100.00%

Table 24. Estimated fish catches of the commercial shrimp fleet for the South Atlantic Region between 1973 and 1975

or brown shrimp fisheries - North Carolina is the only state in the region with a fishery directed at pink shrimp.

The median ratio values calculated from available data suggest that the by-catch of trawlers fishing in the South Atlantic Region is less than that of similar boats fishing in the Gulf of Mexico. Juhl (1974) reported that in the Gulf of Mexico, fishiheads-on shrimp ratios ranged from 4.1:1 to 20.0:1. He used an average ratio of $10.0: 1$ to estimate annual incidental fish catches on shriming grounds. Chfttenden and McEachran (1975) calculated a ratio of 11.35 volumes of discard (approximately 90% fish) to 1 volume of shrimp (heads-off) from 60 shrimp-trawl catches; 95% confidence 11 ints were $9.7: 1$ and 13.0:1. The overall fishishrimp (heads-off) rat1o wan approxinately 10.0:1. This corresponds to a fish:shrimp (headson) ratio of approximately $6,2: 1$.

Fish:shrimp (heads-on) ratios ranged from a low of $1.2: 1$ during part of the shrimplng season in South Carolfna to a high of $4.0: 1$ in North Carolina. Using data assembled during this investigation, I eatimate that the thrimp fleet in the South Atlant ic Region caught an average of 69.5 million 1 bs of fish per year from 1973 through 1975 (Table 24). This was approximately 24 tines the average yearly landings for this perlod (2.9 million Ibs). At the present time, only food fish for which there is a traditional market (e.g. whole or filets) are landed and the reminder of the by-catch, which potentially could be marketed as minced fish or meal, is discarded.

Presently only North Carolina has facilities for processing industrial-size fish. Lack of processing facilities, however, is not the only factor preventing increased utilization of the resource. On-board reduction of fish was proposed as early as 1950 (Baughman 1950) and more recently, Georgia's Sea Grant Program has investigated this possibility (S.A. Vezey, D.V.M., personal comunication, Deceaber 21, 1976). Another factor is the traditional preference by shrimpers for the higher-priced penaeld shrimp. In fact. reduction plants in the Gulf of Mexico are supplied by a fishing fleet which is independent of the shrimping fleet (Gutherz, et al. 1975) because the price paid to shrimpera for incidental species failed to provide them with sufficient incentive to land a dependable supply of fish.

The biggest problem may be ensuring a year-round supply of fish for the processing plants. The fou travis made during non-shrimping months (Anderson 1968; Keiser 1976; Knowlton 1972) appear to indicate that the largest blomass of fish coincides with the shrimping season. Detafled surveys must be made to deternine the seasonal nature of the nearshore fishery resource.

Increasing the use of blue crabs, wheh at times comprise a large part of shrimp trawler catches, offers another possibility for increasing shrimp trawler landings. The quantity of blue crabs caught by trawlers is not known. Attempts to
quantify blue crab catches in South Carolina enploying methods used to sample the fish by-catch were unsuccessful (Keiser 1976). The quantity of blue crabs landed in South Carolina depends on market price and the inclination of the individual shrimper: often large quanticies of marketable crabs are shoveled overboard (R . K. Keiser, Jr., personal observation). Shrimp trawlers account for only a small part of the total blue crab landings (Table 25). The landings attributable to shrimp trawlers varied considerably from state to state; in Georgia, travlers accounted for more than 11% of 1975 landfings compared to less than 0.1π of South Carolina landings. In general, the relative amount of blue crabs landed by shrimp trawlers has declined durfing the pertod 1973 to 1975.

Several differences between the Gulf of Mexico and the South Atlantic Region surgest that it may not be wise to develop an industrial fleet to exploit nearshore fishery resources. In the Gulf of Mexico, the shrimp and industrial fishery resource extend much further offshore and are to some extent independent because fishing activities do not occur in close proximity to shrimp and sciaenid nursery areas. In contrast, along the South Atlantic coast, the shrimp fishery is conducted within 6 miles of shore and overlaps the sciaenid resource. Furthermore, Hoese (1973) doubted that the nearshore region would provide sufficient quantities of fish to support profitable harvesting operations. He noted that catch rates close to the beach in Georgia with a $40-\mathrm{ft}$ balloon shrimp trawl only twice exceeded $500 \mathrm{lbs} \mathrm{hr}^{-1}$ and averaged $180 \mathrm{lbs} \mathrm{hr}{ }^{-1}$, catch rates in the sounds were twice those of inshore waters, but fishing there would destroy large numbers of juvenile shrimp. Hoese's average eatch rates were higher than those determined by Knowlton, $120 \mathrm{lbs} \mathrm{hr}^{-1}$, for the Ceorgia commercisl shrimp fleet, but lover than that estimated by Keiser, $2721 \mathrm{bs} \mathrm{hr}^{-1}$ for the South Carolina shrimp fleet. Knowlton (personal communication, Septenber 2,1977) fndfeated that his data probably represented the lowest estinates of fish eatch rates for shrimp trawlers. Nevertheless, catch rates from his study are considerably below those of $1209 \mathrm{ibs} \mathrm{hr}^{-1}$ estimated for the industrial fish fishery of the Gulf of Mexico (Rothmar 1965). In conclusion, it scems that increasing fishing production in the South Atlantic Region should focus first on utilizing shrimp byeatch before encouraging development of a separate industrial fighery.

ACKNOWLEDGEMENTS

This report could not bave been written without the complete cooperation of the Fisheries Departments of the South Atlantic States. I especially wish to thank Connell Purvis for collecting additional data on the North Carolina shrimp fishery: Maury Wolff for information on the North Carolina Fishery; Dale Thelling and Dottie Hope for providing catch information and insights on the South Carolina fishery; Gerry Knowlton for providing raw data from his detalled survey of the Georgia fishery; William W. Anderson. Robert Mahood and Mike Street for their

Table 25. A comparison of the amount of blue crabs landed by shrimp trawlers to that landed by all gear types. (Source: NMFS, unpublished data; North Carolina landings, 1973-75; South Carolina landings, 1973-75; Georgia landings, 1973-75)

State

North Carolina
1973
1974
1975

South Carolina

Georgia

1973
1974
1975
236.8
221.0
247.5

12,008.4
2.0\%

13,196.8
1.7

11,087.6
2.2
1973
1974
1975
44.6
$7,952.0$
$7,547.6$
$6,565.2$
0.6
0.0
1.0
<0.1
-
1,446.6
7,984.2
18.1

1,480.8
10,130.8
14.6
990.4

8,865.4
11.2
views on the by-catch resource of the region; and Stu Kennedy for his assistance in surveying the Florida literature.
Ken Harris, NMFS, Beaufort, North Carolina, provided information on vessel composition of the South Atlantic States and obtained landing statistics for commercial trawlers for North Carolina, South Carolina and Georgia, and Ernie Snell, NMFs, Miami, Florida, provided shrimp trawler landing statistics for the Florida east coast. I thank Ray Rhodes, Pete Eldridge, Charles Barans, Paul Sandifer, Maury Wolff, Gerry Knowlton, and Stu Kennedy for their helpful suggestions and critical review of the manuscript. I especially thank Jim Bishop and Kathleen Meuli for their patience and assistance in the final preparations of this report. Pat Dupree and Laura Sloan helped type the manuscript; Karen Swanson drafted the figures and assisted in the report layout; Donna Florio coordinated the printing of the technical report.

LITERATURE CITED

Anderson, Jr., W. D., J, K, Dias, R, K, Dias, D, M, Cupka, and N. A. Chamberlain, 1977. The macrofauna of the surf zone off Folly Beach, South Carolina. NOAA Tech. Rp. NMFS SSRP-704, 23 pp.

Anderson, W. W. 1968. Fishes taken during shrimp trawling along the South Atlantic Coast of the United States, 1931-35. U. S. Fish Wildi. Serv. Sp. Se1. Rp. - Fish. \$570. 60 pp.
and J. W. Gehringer. 1965. Biologicalstatistical census of the species entering fisheries in the Cape Canaveral area. U, S, Fish Wildl. Serv. Sp. Sci. Rp. - Fish. 1514.79 pp.

Anonymous. 1959. Meal of pet food from industrial scrap fish. Bears Bluff Laboratories. Mimeo. March 2, 1959. 2 pp.

Barans, C. A. and V. C. Burre11, Jr. 1976. Preininary findings of trawling on the Continental Shelf off the Southenstern United States during four seasons (1973-1975). S. C. Mar. Res. Center. Tech. Rep. \$13. 16 pp.

Baughann, J. L. 1950. Wtilizing waste fish resulting from the shrimping industry. Fish Meal and 011 Industry $2(12)$: $9-10,16-17$.

Bearden, C. M. 1963. A contribution to the biology of the king whitings, genus Menticirrhus, of South Carolina. Contrib. Bears Bluff Lab. No. 38. 27 pp .
. 1964. Distribution and abundance of Atlantic croaker, Micropogon undulatus. of South Carolina. Contrib. Bears Bluff Lab. No. 40. 23 pp.
and M. D. McKenzie. 1971. An investigation of the offshore demersal fish resources of South Carolina. S. C. Wildl, Res. Dep. Tech. Rep. $\$ 2$. 19 pp.

Beaumariage, D. S. 1968. Manufacture of fish meal from Florida's fishery waste and underexploited fishes. Pla. State Bd, Cons. Tech. Ser. 854. 56 pp .

Best, E. A. 1959. Status of the animal food fishery in Northern California, 1956 and 1957. Callfornia Fish and Game 45 (1): 5-18.

Brown, J. and E. McCoy. 1969. A review of the North Carolina scrap fishery. North Carolina Department of Conservation and Development, Division of Commercial and Sports Fisheries, Information. Ser. No. 1, 12 pp .

Bullis, Jr., H. R. and J. S. Carpenter. 1968. Latent fishery resources of the central West Aclantic Region. In: The future of the fishery Industry of the United States. Univ. Wash. Publ. Fish. New Series Vol. IV: 61-64.

Chittenden, Jr., M. E. and J. D. McEachran. 1975. Fishes of two shrimp grounds in the Northwestern

Gulf of Mexico. Paper presented at 55th Ann. Meet. Amer. Soc. Ichthyologista and Herpetologists, June 9, 1975, W1111amsburg, Va. 5 pp.

Corne11, J. H. 1948. Potential by-products of the South Carolina fisheries industry. Contri. Bears Bluff Lab. No. 5.

Cupka, D. M. 1972. A survey of the ichthyofauna of the surf zone in South Carolina. 8. C. Wildl. Mar. Res. Dep. Tech. Rep. f4. 19 pp.

Curtis, T. A. 1971. Anadromous fish survey of the Santee and Cooper Rivers. S. C. Wildl. Mar. Res. Dep. Job Prog, Rep., Proj, AFS-3-1. 57 pp.

- 1972. Anadromous fish survey of the Santee and Cooper Rivers. S. C. Wildl. Mar. Rea. Dep. Job Frog. Rep., Froj. Ars-3-2. 40 pp.

Dahlberg, M. D. and E. P. Odum. 1970. Annual cycles of species occurrence, abundance, and diversity in Georgia estuarine fish populations. Amer. Mid1. Natur. 83(2): 382-392.

Dawson, C. E. 1958. A study of the blology and iffe history of the spot, Leiostomus xanthurus, Lacepede, with special reference to South Carolina. Contrib. Bears Bluff Lab, No. 28.48 pp ,

Edwards, R. L. and F. E. Lux. 1958. New England's induatrial fishery. Com. Fish. Rev. 20(5): 1-6.

Fahy, W. E. 1965a. Report of trash fish study in North Carolina in 1962. N. C. Dept. of Conservation and Development, Div. of Commercial Fisheries, Raleigh, N. C., March 1965. Sp. Sci. Rep. No. 5 ,
. 1965b. Report of trash fish study in North Carolina in 1964. North Carolina Department of Conservation and Development, Div. of Comerelal Fisheries, Raleigh, N. C., Oct. 1965. Sp. Sci. Rep. No. 7.

- 1966. Species composition of the North CaroIna industrial fish fishery. Com. Fish. Rev. 28(7): 1-8.

Florida Landings. 1973. National Marine Fisheries Service. NOAA. Department of Commerce, Washington, D. C.
_ 1974. Narional Marine Fisheries Service. NOAA. Department of Coumerce, Washington, D. C.

- 1975. National Marine Fisheries Service.

NOAA. Department of Commerce, Washington, D. C.
Georgia Landings. 1973. National Marine Fisheries Service. NOAA. Department of Commerce, Washington, D. C.

Georgia Landings. 1974. National Marine Fisheries Service. NOAA. Department of Commerce, Washington, D. C.
. 1975. National Marine Fisheries Service.
NOAA. Department of Commerce, Washington, D. C.

Gunter, G. 1956. Should fish and game fishes become more or less abundant as pressure increases in the trash finh fishery of the Gulf of Mexico? La. Conserv. 11, 14-15, 19.

Gutherz, E. J., C. M. Russell, A. F. Serra, and B. A. Rohr. 1975. Synopsis of the northern Gulf of Mexico industrial and foodifish industries. Marine Fish. Rev. 37(7): 1-11.

Haske11, !. 1961. Gulf of Mexico trawl Eishery for industrial species. Com. Fish. Rev. 23(2): 1-б.

Hoese, H. D, 1973. A trawl study of nearshore fishes and invertebrates of the Georgla coast. Contrib. Mar. Sc1. 17: 63-98.

Holston, J. A. 1960. Potential markets for products of the industrial fisheries. Proc. Gulf Carib. Fish. Inst., 12th Ann. Sess., Nov. 1959: 28-31.

Jones, W. G. 1959a. The use of fish in petfoods. In: Fishery resources for animal food. 1969. Pp. 1-2, U. S. Fish Wildi. Serv. Fish. Leaf. 7501. 22 pp .

- 1959b. Fish for perfood in the Gulf of Mexico. In: Fishery resources for animal food. 1969. $p p$. 6-7. U. S. Fish Wildi. Serv. Fish. Leaf. 1501. 22 pp.
- 1960. Fish for petfoods - South Atlantic

Coast. In: Fishery resources for animal food. 1969. pp. 16-17. U. S. Pish Wildl. Sery. Fieh. Leaf. 1501. 22 pp .

Jorgensen, S. C. and G. L. Miller. 1968. Length relations of same marine fishes from coastal Georgia. U. S. Fish. and wild1. Serv. Spec. Sci. Rep. Fish. 575 pp.

Joyce, Jr., E. A. 1965. The comercial shrimp of the northeast coast of Florida. Fla. State Bd. Conserv., Prof. Pap. Ser. 16.224 pp .

Juh1, R. 1974. Sciaenid fishery resources of the Western Atlantic. Paper presented Int. Council for the Exploration of the Sea. 9 pp.

Keiser, Jr., R. K. 1976, Species composition, magnitude and utilization of the incidental catch of the South Carolina shrimp fishery. S.C. Mar. Res. Center, Tech. Rep. No. 16. Sept. 1976. 94 pp .

Kennedy, Jr., F. S., J. J. Crane, R. A. Schlieder, and D. G. Barber. In press. Studies of rock shrimp, Sicyonia brovirostris, a nes fishery resource on Florida's Atlantic Shelf. Fla. Dept. Nat. Resources.

Knowlton, C. J. 1972. Fishes taken during commercial shrimp fishing in Georgia's close inshore ocean waters. Ga. Game and Fish Comm., Coastal Fish. Office. Contri. Serfes No, 21, 1-42 pp.

Latham, F. F. 1951. Evidence of fish loss due to shrimping in Pamilico Sound. Conalttee Report to Aclantic States Marine Fisheries Commssion, November 1, 1951. Appendix B: 4 pp.

Lindner, M. J. 1936. A discussion of the shrimptraw1 - fish problem. La. Conserv, Rev. Vol. 4: 12-17.

Lunz, C. R. 1944. Marine fishery resources of South Carolina. South Carolina State Planning Board, Columbia, S. C.

- 1955. Trawling vs. sports fishing. Bears Bluff Lab. M1meo. 3 pp.
. 1960. Industrial possibilities South Carolina Fishery Industry. Miseo. Written for State Development Board, Bears Bluff Laboratory, November 23, 1960.
and F. J. Schwartz. 1970. Analysis of eighteen year trawl captures of seatrout (Cynoscion sp: Sciaenidae) from South Carolina. Contrib. Bears Bluff Lab. No. 53. 29 pp.
, J. L. McHugh, E. W. Roelfs, R. E. Tller, C. E. Atkinson. 1951. The destruction of small fish by the shrimp trawlers in Pamlico Sound, North Carolina. Unpublished report to the Chesapeake and South Atlantic Sections, Atlantic States Marine Fisheries Comm. 13 pp with 5 appendixes.

Mahood, R. K., C. D. Harris, J. L. Music, Jr. and B. A. Palmer. 1972a. Survey of the fisheries resources in Georgia's estuarine and Inshore ocean waters Part I. Ga, Dept. of Nat. Res., Game and Pish Div., Coastal Fish. Office, Contri. Serfes No. 22.104 pp .

Fisheries and - 1974 b . Survey of the fisheries resources in Georgia's estuarine and Inshore ocean vaters Part II. Ga. Dept. of Nat. Res., Coastal Fish. Office, Contri. Series No, 23. 99 pp .
\qquad ,and \qquad - 1974c. Survey of the fisheries resources in Georgin's estuarine and inshore ocean vaters Part III. Ga. Dept, of Nat. Res., Game and Fish. Div., Coastal Fish. Office. Contri. Series No. 24. 100 pp.
, \qquad , and \qquad . 1974d. Survey of the fisheries resources in Georgia's estuarine and fnshore ocean waters Part TV. Ga. Dept. of Nat. Res., Game and Fish. Div., Coastal Fish. Office, Contri. Series No, 25. 201 pp.

Martinez, I. S. 1977. Producing minced £ish blocks from Colombian shrimp trawler by-catches: Prelifinary studtes. Proc. Culf Carib. Fish. Inst., 29th Ann. Sess., Nov. 1976: 26-27.

Miller, G. L. and S. C. Jorgensen. 1969. Seasonal abundance and length frequency of some marine fishes in coastal Georgid. U. S. Fish and Wildi. Serv. Data Rep. 25, 101 pp.

North Carolina Landings. 1973. National Marine Fisheries Service, NOMA. Department of Comerce, Washington, D. C.
. 1974. National Marine Fisheries Service.
NOMA. Department of Commerce, Washington, D. C.
. 1975. National Marine Fisheries Service. NOAA. Departsent of Commerce, Washington, D. C.

Pigott, G. M. 1973. Total utilization of fishery products. Proc. Gulf Carib. Fish. Inst., 25 th Ann. Sess., Nov. . 1972, pp. 115-120.

Roelofs, E. W. 1950. Observations on the capture of small fish by the shrimp trawls. Reprinted from the 1950 Annual Report of the Institute of Fisheries Research of the University of North Carolina. In: Comittee Report to Atlantic States Marine Fisheries Comission, November 1, 1951. Appendix A: 4 pp .

Rothmayr, C. M. 1965. Review of industrial bottomfishery in northern Gulf of Moxico, 1959-63. Comm. Fish. Rev. 27(1): 1-6.

Shealy, M. H., J. V. Miglarese, and E. B. Joseph. 1974. Bottomfishes of South Carolina Estuaries Relative abundance, seasonal distribution and length-frequency relationships. S. C. Mar. Res. Center Tech. Rep, No. 6. 189 pp.

Siebenaler, J. B. 1952. Studfes of "trash" caught by shrimp trawlers in Florida. Proc. Gulf. Carib. Fish. Inst., 4th Ann. Sess., Nov. 1951. 94-99.

South Carolina Landings. 1973. National Marine Fisheries Service. NOAA. Departsent of Commerce, Washington, D. C. _ 1974. National Marine Fisheries Service. NOAA. Department of Comerce, Washington, D. C.
. 1975. National Marine Fisherien Service. NOAA. Department of Comerce, Washington, D. C.

Struhsaker, P. 1969. Demersal fish resources: Composition, distribution, and commercial potential of the continental shelf stocks off southeastern United States. Fish. Ind. Re, 4(7): 261-300.

T111er, R. E. 1951. Observations made on composition of shrimp trawl catches. Committee Report to Atlantic States Marine Fisheries Commission, November 1, 1951. Appendix C: 2 pp.

Vincent, D. B. 1951. Potentialities for increased utilization of scrap fish and fish waste in the Gulf and Caribbean Area. Gulf Carib. Fish. Inst., 4th Ann. Sess. Nov. 1950.

Wolff, M. 1972. A study of North Carolina scrap fishery. N. C. Dept. of Natural and Economic resources, Div. of Commercial and Sports Fisheries, Special Scientific Report No. 20. 29 pp.

[^0]: This work is a result of research sponsored by the National Marine Fisheries Service under Contract Number 01-6-042-11186 and by the South Carolina Wildife and Marine Resources Department. MARMAP Contribution Number 152.

[^1]: * Ratios > 100:1 excluded
 ** Ratios > 20:1 excluded

[^2]: $1_{\text {Based }}$ on median catch

[^3]: *Indicates Data not Presently Available

